scholarly journals On minimal Ramsey graphs and Ramsey equivalence in multiple colours

2020 ◽  
Vol 29 (4) ◽  
pp. 537-554
Author(s):  
Dennis Clemens ◽  
Anita Liebenau ◽  
Damian Reding

AbstractFor an integer q ⩾ 2, a graph G is called q-Ramsey for a graph H if every q-colouring of the edges of G contains a monochromatic copy of H. If G is q-Ramsey for H yet no proper subgraph of G has this property, then G is called q-Ramsey-minimal for H. Generalizing a statement by Burr, Nešetřil and Rödl from 1977, we prove that, for q ⩾ 3, if G is a graph that is not q-Ramsey for some graph H, then G is contained as an induced subgraph in an infinite number of q-Ramsey-minimal graphs for H as long as H is 3-connected or isomorphic to the triangle. For such H, the following are some consequences.For 2 ⩽ r < q, every r-Ramsey-minimal graph for H is contained as an induced subgraph in an infinite number of q-Ramsey-minimal graphs for H.For every q ⩾ 3, there are q-Ramsey-minimal graphs for H of arbitrarily large maximum degree, genus and chromatic number.The collection $\{\mathcal M_q(H) \colon H \text{ is 3-connected or } K_3\}$ forms an antichain with respect to the subset relation, where $\mathcal M_q(H)$ denotes the set of all graphs that are q-Ramsey-minimal for H.We also address the question of which pairs of graphs satisfy $\mathcal M_q(H_1)=\mathcal M_q(H_2)$ , in which case H1 and H2 are called q-equivalent. We show that two graphs H1 and H2 are q-equivalent for even q if they are 2-equivalent, and that in general q-equivalence for some q ⩾ 3 does not necessarily imply 2-equivalence. Finally we indicate that for connected graphs this implication may hold: results by Nešetřil and Rödl and by Fox, Grinshpun, Liebenau, Person and Szabó imply that the complete graph is not 2-equivalent to any other connected graph. We prove that this is the case for an arbitrary number of colours.

2021 ◽  
Vol 28 (1) ◽  
Author(s):  
Jordan Barrett ◽  
Valentino Vito

For fixed finite graphs $G$, $H$, a common problem in Ramsey theory is to study graphs $F$ such that $F \to (G,H)$, i.e. every red-blue coloring of the edges of $F$ produces either a red $G$ or a blue $H$. We generalize this study to infinite graphs $G$, $H$; in particular, we want to determine if there is a minimal such $F$. This problem has strong connections to the study of self-embeddable graphs: infinite graphs which properly contain a copy of themselves. We prove some compactness results relating this problem to the finite case, then give some general conditions for a pair $(G,H)$ to have a Ramsey-minimal graph. We use these to prove, for example, that if $G=S_\infty$ is an infinite star and $H=nK_2$, $n \geqslant 1$ is a matching, then the pair $(S_\infty,nK_2)$ admits no Ramsey-minimal graphs.


10.37236/1184 ◽  
1994 ◽  
Vol 1 (1) ◽  
Author(s):  
Tomasz Łuczak

An elementary probabilistic argument is presented which shows that for every forest $F$ other than a matching, and every graph $G$ containing a cycle, there exists an infinite number of graphs $J$ such that $J\to (F,G)$ but if we delete from $J$ any edge $e$ the graph $J-e$ obtained in this way does not have this property.


2017 ◽  
Vol 17 (03n04) ◽  
pp. 1741010
Author(s):  
GRAHAME ERSKINE

The degree-diameter problem seeks to find the largest possible number of vertices in a graph having given diameter and given maximum degree. There has been much recent interest in the problem for mixed graphs, where we allow both undirected edges and directed arcs in the graph. For a diameter 2 graph with maximum undirected degree r and directed out-degree z, a straightforward counting argument yields an upper bound M(z, r, 2) = (z+r)2+z+1 for the order of the graph. Apart from the case r = 1, the only three known examples of mixed graphs attaining this bound are Cayley graphs, and there are an infinite number of feasible pairs (r, z) where the existence of mixed Moore graphs with these parameters is unknown. We use a combination of elementary group-theoretical arguments and computational techniques to rule out the existence of further examples of mixed Cayley graphs attaining the Moore bound for all orders up to 485.


Author(s):  
NOGA ALON ◽  
RAJKO NENADOV

AbstractWe show that for any constant Δ ≥ 2, there exists a graph Γ withO(nΔ / 2) vertices which contains everyn-vertex graph with maximum degree Δ as an induced subgraph. For odd Δ this significantly improves the best-known earlier bound and is optimal up to a constant factor, as it is known that any such graph must have at least Ω(nΔ/2) vertices.


2009 ◽  
Vol 34 ◽  
pp. 47-51
Author(s):  
W. Sean Kennedy ◽  
Conor Meagher ◽  
Bruce A. Reed

2016 ◽  
Vol 09 (02) ◽  
pp. 1650041
Author(s):  
M. R. Chithra ◽  
A. Vijayakumar

Let [Formula: see text] be a family of connected graphs. A spanning subgraph [Formula: see text] of [Formula: see text] is called an [Formula: see text]-factor (component factor) of [Formula: see text] if each component of [Formula: see text] is in [Formula: see text]. In this paper, we study the component factors of the Cartesian product of graphs. Here, we take [Formula: see text] and show that every connected graph [Formula: see text] has a [Formula: see text]-factor where [Formula: see text] and [Formula: see text] is the maximum degree of an induced subgraph [Formula: see text] in [Formula: see text] or [Formula: see text]. Also, we characterize graphs [Formula: see text] having a [Formula: see text]-factor.


2017 ◽  
Vol 313 ◽  
pp. 119-121 ◽  
Author(s):  
Jiansheng Cai ◽  
Guiying Yan ◽  
Xia Zhang
Keyword(s):  

2013 ◽  
Vol 23 (1) ◽  
pp. 90-101 ◽  
Author(s):  
TOMÁŠ KAISER ◽  
ROSS J. KANG

We consider two graph colouring problems in which edges at distance at most t are given distinct colours, for some fixed positive integer t. We obtain two upper bounds for the distance-t chromatic index, the least number of colours necessary for such a colouring. One is a bound of (2-ε)Δt for graphs of maximum degree at most Δ, where ε is some absolute positive constant independent of t. The other is a bound of O(Δt/log Δ) (as Δ → ∞) for graphs of maximum degree at most Δ and girth at least 2t+1. The first bound is an analogue of Molloy and Reed's bound on the strong chromatic index. The second bound is tight up to a constant multiplicative factor, as certified by a class of graphs of girth at least g, for every fixed g ≥ 3, of arbitrarily large maximum degree Δ, with distance-t chromatic index at least Ω(Δt/log Δ).


Author(s):  
Naoki Matsumoto

In 2011, Beeler and Hoilman introduced the peg solitaire on graphs. The peg solitaire on a connected graph is a one-player combinatorial game starting with exactly one hole in a vertex and pegs in all other vertices and removing all pegs but exactly one by a sequence of jumps; for a path [Formula: see text], if there are pegs in [Formula: see text] and [Formula: see text] and exists a hole in [Formula: see text], then [Formula: see text] can jump over [Formula: see text] into [Formula: see text], and after that, the peg in [Formula: see text] is removed. A problem of interest in the game is to characterize solvable (respectively, freely solvable) graphs, where a graph is solvable (respectively, freely solvable) if for some (respectively, any) vertex [Formula: see text], starting with a hole [Formula: see text], a terminal state consisting of a single peg can be obtained from the starting state by a sequence of jumps. In this paper, we consider the peg solitaire on graphs with large maximum degree. In particular, we show the necessary and sufficient condition for a graph with large maximum degree to be solvable in terms of the number of pendant vertices adjacent to a vertex of maximum degree. It is a notable point that this paper deals with a question of Beeler and Walvoort whether a non-solvable condition of trees can be extended to other graphs.


Sign in / Sign up

Export Citation Format

Share Document