Developmentally regulated markers of in vitro-produced preimplantation bovine embroys

Zygote ◽  
1996 ◽  
Vol 4 (2) ◽  
pp. 109-121 ◽  
Author(s):  
D. Shehu ◽  
G. Marsicano ◽  
J.-E. Fléchon ◽  
C. Galli

SummaryExpression of various developmentally regulated markers was screened throughout the preimplantation stages of in vitro-derived bovine embryos. This was done by investigating the distribution of several nuclear, cytoplasmic and extracellular proteins by means of immunofluorescence microscopy. While lamin B appeared as a constitutive component of nuclei of all preimplantation stages, lamins A/C had a stage-related distribution. The early cleavage stage nuclei contained lamins A/C which generally disappeared in the following stages, with the possible exception of a few positive nuclei in the morula and early blastocyst stage. In the expanded blastocyst stage the nuclei of trophectoderm cells became positive while no positivity was observed in the inner cell mass cells. Starting from day 6, the appearance and/or polarised distribution of various cytoskeletal and cytoskeleton-related components such as Factin, α-catenin and E-cadherin gave an insight into the timing of events related to compaction of bovine e bryos. Compaction was correlated with the first differentiation event, i.e. the formation of trophectoderm; this is the first embryonic epithelium, characterised by cytokeratins and desmoplakin. Extracellular fibronectin was first detected in the early blastocyst stage shortly before the morphological differentiation of primitive endoderm, and in the later stages it was localised at the interface between trophectoderm and extraembryonic endoderm. Laminin and collagen IV were expressed by the endoderm cells and contributed to the extracellular matrix underlying the trophectoderm. This study is a first attempt to characterise the cells of in vitro-derived bovine embryos valid for cell line derivation.

Endocrinology ◽  
2009 ◽  
Vol 150 (11) ◽  
pp. 5046-5054 ◽  
Author(s):  
Bárbara Loureiro ◽  
Luciano Bonilla ◽  
Jeremy Block ◽  
Justin M. Fear ◽  
Aline Q. S. Bonilla ◽  
...  

In this study, we tested the role of colony-stimulating factor 2 (CSF2) as one of the regulatory molecules that mediate maternal effects on embryonic development during the preimplantation period. Our objective was to verify effects of CSF2 on blastocyst yield, determine posttransfer survival, and evaluate properties of the blastocyst formed after CSF2 treatment. In vitro, CSF2 increased the percentage of oocytes that became morulae and blastocysts. Blastocysts that were treated with CSF2 tended to have a greater number of inner cell mass cells and had a higher ratio of inner cell mass to trophectoderm cells. There was no effect of CSF2 on the incidence of apoptosis. Treatment with CSF2 from d 5 to 7 after insemination increased embryonic survival as indicated by improved pregnancy rate at d 30–35 of gestation. Moreover, treatment with CSF2 from either d 1–7 or 5–7 after insemination reduced pregnancy loss after d 30–35. Results indicate that treatment with CSF2 can affect embryonic development and enhance embryo competence for posttransfer survival. The fact that treatment with CSF2 during such a narrow window of development altered embryonic function much later in pregnancy suggests that CSF2 may exert epigenetic effects on the developing embryo that result in persistent changes in function during the embryonic and fetal periods of development.


2021 ◽  
Author(s):  
Kilian Simmet ◽  
Mayuko Kurome ◽  
Valerie Zakhartchenko ◽  
Horst-Dieter Reichenbach ◽  
Claudia Springer ◽  
...  

The mammalian blastocyst undergoes two lineage segregations, i.e., formation of the trophectoderm and subsequently differentiation of the hypoblast (HB) from the inner cell mass, leaving the epiblast (EPI) the remaining pluripotent lineage. To clarify expression patterns of markers specific for these lineages in bovine embryos, we analyzed day 7, 9 and 12 blastocysts completely derived ex vivo by staining for OCT4, NANOG, SOX2 (EPI) and GATA6, SOX17 (HB) and identified genes specific for these developmental stages in a global transcriptomics approach. To study the role of OCT4, we generated OCT4-deficient (OCT4 KO) embryos via somatic cell nuclear transfer or in vitro fertilization. OCT4 KO embryos reached the expanded blastocyst stage by day 8 but lost of NANOG and SOX17 expression, while SOX2 and GATA6 were unaffected. Blastocysts transferred to recipient cows from day 6 to 9 expanded, but the OCT4 KO phenotype was not rescued by the uterine environment. Exposure of OCT4 KO embryos to exogenous FGF4 or chimeric complementation with OCT4 intact embryos did not restore NANOG or SOX17 in OCT4-deficient cells. Our data show, that OCT4 is required cell-autonomously for the maintenance of pluripotency of the EPI and differentiation of the HB in bovine embryos.


Reproduction ◽  
2009 ◽  
Vol 137 (2) ◽  
pp. 285-295 ◽  
Author(s):  
Enrique Gómez ◽  
Alfonso Gutiérrez-Adán ◽  
Carmen Díez ◽  
Pablo Bermejo-Alvarez ◽  
Marta Muñoz ◽  
...  

Parthenotes may represent an alternate ethical source of stem cells, once biological differences between parthenotes and embryos can be understood. In this study, we analyzed development, trophectoderm (TE) differentiation, apoptosis/necrosis, and ploidy in parthenotes andin vitroproduced bovine embryos. Subsequently, using real-time PCR, we analyzed the expression of genes expected to underlie the observed differences at the blastocyst stage.In vitromatured oocytes were either fertilized or activated with ionomycin +6-DMAP and cultured in simple medium. Parthenotes showed enhanced blastocyst development and diploidy and reduced TE cell counts. Apoptotic and necrotic indexes did not vary, but parthenotes evidenced a higher relative proportion of apoptotic cells between inner cell mass and TE. The pluripotence-relatedPOU5F1and the methylationDNMT3Agenes were downregulated in parthenotes. Among pregnancy recognition genes,TP-1was upregulated in parthenotes, whilePGRMC1andPLAC8did not change. Expression ofp66shcandBAX/BCL2ratio were higher, andp53lower, in parthenotes. Among metabolism genes,SLC2A1was downregulated, whileAKR1B1,PTGS2,H6PD, andTXNwere upregulated in parthenotes, andSLC2A5did not differ. Among genes involved in compaction/blastulation,GJA1was downregulated in parthenotes, but no differences were detected withinATP1A1andCDH1. Within parthenotes, the expression levels ofSLC2A1,TP-1, andH6PD, and possiblyAKR1B1, resemble patterns described in female embryos. The pro-apoptotic profile is more pronounced in parthenotes than in embryos, which may differ in their way to channel apoptotic stimuli, throughp66shcandp53respectively, and in their mechanisms to control pluripotency andde novomethylation.


Development ◽  
1989 ◽  
Vol 107 (3) ◽  
pp. 597-604 ◽  
Author(s):  
K. Hardy ◽  
A.H. Handyside ◽  
R.M. Winston

The development of 181 surplus human embryos, including both normally and abnormally fertilized, was observed from day 2 to day 5, 6 or 7 in vitro. 63/149 (42%) normally fertilized embryos reached the blastocyst stage on day 5 or 6. Total, trophectoderm (TE) and inner cell mass (ICM) cell numbers were analyzed by differential labelling of the nuclei with polynucleotide-specific fluorochromes. The TE nuclei were labelled with one fluorochrome during immunosurgical lysis, before fixing the embryo and labelling both sets of nuclei with a second fluorochrome (Handyside and Hunter, 1984, 1986). Newly expanded normally fertilized blastocysts on day 5 had a total of 58.3 +/− 8.1 cells, which increased to 84.4 +/− 5.7 and 125.5 +/− 19 on days 6 and 7, respectively. The numbers of TE cells were similar on days 5 and 6 (37.9 +/− 6.0 and 40.3 +/− 5.0, respectively) and then doubled on day 7 (80.6 +/− 15.2). In contrast, ICM cell numbers doubled between days 5 and 6 (20.4 +/− 4.0 and 41.9 +/− 5.0, respectively) and remained virtually unchanged on day 7 (45.6 +/− 10.2). There was widespread cell death in both the TE and ICM as evidenced by fragmenting nuclei, which increased substantially by day 7. These results are compared with the numbers of cells in morphologically abnormal blastocysts and blastocysts derived from abnormally fertilized embryos. The nuclei of arrested embryos were also examined. The number of TE and ICM cells allocated in normally fertilized blastocysts appears to be similar to the numbers allocated in the mouse. Unlike the mouse, however, the proportion of ICM cells remains higher, despite cell death in both lineages.


2006 ◽  
Vol 18 (2) ◽  
pp. 197 ◽  
Author(s):  
B. S. Song ◽  
J. S. Kim ◽  
D. B. Koo ◽  
J. S. Park ◽  
K. K. Lee ◽  
...  

The microenvironment of the follopian tube, in which the oviductal fluid contains a variety of cytokines and growth factors, affects pre-implantation development of fertilized embryos in mammals. Prostaglandin I2 (PGI2, prostacyclin) exists in oviductal fluid and is synthesized from arachidonic acid by prostacyclin synthetase. PGI2 also enhances the implantation rate of mouse embryos. In this study, the effect of PGI2 analog on the development of bovine embryos was examined. Bovine cumulus oocytes complexes (COCs) were matured in TCM-199 medium supplemented with 10 IU/mL pregnant mare serum gonadotropin (PMSG), 10 IU/mL hCG, and 10 ng/mL epidermal growth factor (EGF) at 39�C, 5% CO2 in air for 20-22 h. Following in vitro maturation, COCs were fertilized in Fert-TALP medium containing 0.6% BSA using frozen semen. Also, oocytes matured in vitro were enucleated, individually reconstructed with bESF cells, fused, and then activated by treatment with 5 �M ionomycin for 5 min and 2 mM 6-DMAP for 4 h. In vitro-fertilized (IVF) and nuclear-transferred (NT) eggs were cultured in 50 ��L drops of CR1-aa medium supplemented with 0.3% BSA in the absence or presence of 1 �M PGI2 analog at 39�C, 5% CO2 in air, respectively. At 3 days of culture, cleaved embryos were further cultured in the same culture media supplemented with 10% FBS for 4 days. Allocations of blastocysts to inner cell mass (ICM) and trophoblast (TE) cells were investigated to assess embryo quality. All experiments were repeated more than three times. All data were analyzed by using the Duncan test of ANOVA by the Statistical Analysis System (SAS Institute, Inc., Cary, NC, USA) and numbers of nuclei in blastocysts were expressed as mean � SE. No difference was detected in the cleaved rate of the eggs between the treated- and nontreated groups. IVF zygotes treated with PGI2 analog represented a higher developmental rate (33%, 122/418) to the blastocyst stage than nontreated controls (24%, 107/456) (P < 0.05). Among IVF-derived blastocysts, interestingly, the proportion (46%, 84/181) of expanded blastocysts was significantly higher in the PGI2 analog-treated group compared with that in the nontreated group (28%, 46/164). The number of nuclei in (165 � 6.1, n = 15) in blastocysts in the PGI2 analog-treated group was higher than that (146.12 � 5.7, n = 18) in the nontreated group (P < 0.05). No difference was detected in the ratio of ICM to total cells between PGI2 analog-treated (42.0 � 3.0%) and nontreated groups (41.9 � 2.9%). Like the IVF embryos, NT embryos in the PGI2 analog-treated group showed a higher in vitro developmental rate (33.6%, 43/128) than the nontreated embryos (24.2%, 32/132) (P < 0.05). Our results indicate that PGI2 analog improves the kinetics of embryo development in cattle.


1996 ◽  
Vol 8 (8) ◽  
pp. 1193 ◽  
Author(s):  
B Mognetti ◽  
D Sakkas

Diploid parthenogenetic mouse embryos (which possess two maternally-derived genomes) can develop only as far as the 25-somite stage when transferred in utero and exhibit a substantial reduction in trophoblast tissue. The loss of cultured parthenogenetic embryos during postimplantation indicates that a defect in cell lineage may be evident as early as the blastocyst stage. The possibility that a defect may already be reflected at the preimplantation stage was investigated by examining the allocation of cells to the trophectoderm (trophoblast progenitor cells) and the inner cell mass of haploid and diploid parthenogenetic mouse blastocysts. Utilizing a differential labelling technique for counting cells, diploid parthenogenetic blastocysts were found to have fewer inner cell mass cells and trophectoderm cells than their haploid counterparts and normal blastocysts. In addition, both haploid and diploid parthenogenetic blastocysts had a lower inner cell mass: trophectoderm ratio than normal blastocysts. Thus, the relatively poor development of the trophectoderm lineage at the postimplantation stage is not reflected by a reduction in its allotment of cells at its first appearance. Nevertheless, the findings indicate that parthenogenetic development is already compromised at the blastocyst stage, and provide evidence that the expression of imprinted genes has significance for the development of the embryo at the preimplantation stage.


2012 ◽  
Vol 24 (1) ◽  
pp. 164 ◽  
Author(s):  
M. Zhang ◽  
H. H. Chen ◽  
J. W. Tang ◽  
X. W. Liang ◽  
M. T. Chen ◽  
...  

Embryo-splitting technology provides an effective procedure for increasing the number of transferable embryos per donor, producing genetically identical offspring and facilitating embryo sexing. The ability to identify the sex of embryos before transfer will offer a reliable, economical and practical procedure for buffalo breeding. In this study, we have assessed the feasibility of production of offspring with controlled sex in buffalo by first comparing the effect of blastocyst quality on the viability of demi-embryos and then identifying the sex of a demi-embryo by multiplex-nested PCR before transfer into the recipient. In vitro-matured buffalo oocytes were fertilized by IVF and cultured to the blastocyst stage for 6 to 7 days as described by Lu et al. (2007 Anim. Reprod. Sci. 100, 192–196). These blastocysts were classified in terms of their developmental pattern and morphology on a scale of 1 to 3 grades as described by McEvoy et al. (1990 Theriogenology 33, 1245–1253). Blastocysts were split into 2 equal parts by a micromanipulation system. Viability of the resulting demi-embryos was confirmed by formation of a blastocoel cavity and definite inner cell mass after culture for 24 h. One of the zone-free demi-embryos derived from a grade-1 blastocyst was cultured in TCM 199 supplemented with 10% fetal bovine serum for another 2 h, then was transplanted to a spontaneous oestrous recipient. The other demi-embryo was used for sexing by multiplex-nested PCR (Fu et al. 2007 Theriogenology 68, 1211–1218). The results showed that grade-1 blastocysts yielded more viable demi-embryos than grade-2 and grade-3 blastocysts [P < 0.01; 73/92 (79.67%) vs 32/76 (47.05%) vs 26/94 (26.53%), respectively]. Transplantation of the presumed-Y demi-embryo derived from grade-1 blastocyst into a recipient resulted in the birth of a male buffalo calf. To the best of our knowledge, this is the first buffalo calf produced following embryo splitting and PCR sexing of the embryo at the blastocyst stage. Successful birth of the desired-sex offspring in the present study indicates the feasibility of using embryo splitting in combination with multiplex-nested PCR sexing to produce offspring of controlled sex in swamp buffalo. However, the quality of embryos before splitting was an important factor governing the in vitro development of viable demi-embryos. This study was supported by the Guangxi Science and Technology R&D Program (0626001-3-1, 0815008-2-4).


1995 ◽  
Vol 29 (3) ◽  
pp. 320-326 ◽  
Author(s):  
Th. Rülicke ◽  
P. Autenried

Approximately 18% of cryopreserved 2-cell mouse embryos of 26 different batches showed various degrees of morphological damage after the freeze-thaw process. Normal and damaged morphology were assessed by light microscopy and the ability of an embryo to develop in vitro to a blastocyst, or to develop to term, after transfer to foster mothers. Using vital stains such as Fluorescein-diacetate (FDA) and 4',6-Diamidino-2-Phenylindole (DAPI) it was found that in approximately 82% of the cases, both of the 2 blastomeres of the cryopreserved embryos survived the freeze-thaw process; in 10% only one cell survived the process; and in 8% none survived. Normally, only intact 2-cell embryos are considered for transfer. Here it was shown that over 60% of the partially damaged embryos developed in vitro to the blastocyst stage and, of those, 26% developed to term after transfer to suitable foster mothers. Although the inner cell mass (ICM) appeared to remain smaller during culture after the transfer of partially damaged 2-cell stage embryos, no difference during gestation period was found compared with intact embryos.


2004 ◽  
Vol 16 (2) ◽  
pp. 144
Author(s):  
P. Kasinathan ◽  
M.F. Nichols ◽  
J.E. Griffin ◽  
J.M. Robl

Chimeras have been used for investigating fundamental aspects of early embryonic development, and differentiation, and for introducing foreign genes into mammals (Robertson et al., 1986 Nature 323, 445–448; Cibelli et al., 1998 Science 280, 1256–1258). The main objective of this study was to determine if the transfer of blastomeres from in vitro-produced (IVP) embryos into cloned, transchromosomic embryos improved the efficiency of producing transchromosomic calves. Cloned embryos were produced using in vitro-matured bovine oocytes and bovine fetal fibroblasts containing a human artificial chromosome (HAC) (Kuroiwa et al., 2002 Nat Biotechnol 20, 889–894). IVP embryos were produced using standard procedures and blastomeres were harvested at the 8–16 cell stage by removing the zona pellucida with protease. Cloned embryos were randomly divided on Day 4 into two groups. One group received 3–4 IVP blastomeres while a second group served as a control (nonmanipulated cloned embryos). After transferring the blastomeres, the chimeric and cloned embryos were placed in culture (Kasinathan et al., 2001 Biol. Reprod. 64, 1487–1493) and on Day 7 development to the blastocyst stage was evaluated. Grades 1 and 2 embryos were transferred; two each per synchronized recipient. Pregnancy maintenance, calving, and calf survival were evaluated in both groups. Presence of a HAC in live calves was evaluated in both fibroblasts and peripheral blood lymphocytes (PBLs) using FISH analysis. Embryo development to the blastocyst stage, maintenance of pregnancy and number of calves born were analyzed using Chi-square. There were no differences in the rate of blastocyst development at day 7 or establishment of pregnancy at 40d (P&gt;0.05). However, pregnancy rate at 120d, and number of calves that developed to term and were alive at birth (chimera 14/54 and clone 4/90), and at 1 month of age (chimera 13/54 and clone 1/90) were lower (P&lt;0.01) for cloned embryos. The proportion of cells containing an HAC in PBLs, was higher in cloned calves (100%) compared to chimeric calves (26%). The HAC retension rates in PBLs in HAC-positive chimeric and cloned calves were 84% and 95%, respectively. These data indicate that, although the proportion of calves retaining an HAC was lower in chimeras compared to clones, more HAC-positive calves were produced in the chimeric treatment from fewer cloned embryos. We speculate that higher rates of development in the chimeras may be related to the normality of the placenta. Future studies will be required to determine the contribution of the IVP blastomeres to both the inner cell mass and trophectoderm. Therefore, a chimeric approach may be useful for improving the efficiency of producing cloned transchromosomic calves.


Sign in / Sign up

Export Citation Format

Share Document