scholarly journals Biological differences between in vitro produced bovine embryos and parthenotes

Reproduction ◽  
2009 ◽  
Vol 137 (2) ◽  
pp. 285-295 ◽  
Author(s):  
Enrique Gómez ◽  
Alfonso Gutiérrez-Adán ◽  
Carmen Díez ◽  
Pablo Bermejo-Alvarez ◽  
Marta Muñoz ◽  
...  

Parthenotes may represent an alternate ethical source of stem cells, once biological differences between parthenotes and embryos can be understood. In this study, we analyzed development, trophectoderm (TE) differentiation, apoptosis/necrosis, and ploidy in parthenotes andin vitroproduced bovine embryos. Subsequently, using real-time PCR, we analyzed the expression of genes expected to underlie the observed differences at the blastocyst stage.In vitromatured oocytes were either fertilized or activated with ionomycin +6-DMAP and cultured in simple medium. Parthenotes showed enhanced blastocyst development and diploidy and reduced TE cell counts. Apoptotic and necrotic indexes did not vary, but parthenotes evidenced a higher relative proportion of apoptotic cells between inner cell mass and TE. The pluripotence-relatedPOU5F1and the methylationDNMT3Agenes were downregulated in parthenotes. Among pregnancy recognition genes,TP-1was upregulated in parthenotes, whilePGRMC1andPLAC8did not change. Expression ofp66shcandBAX/BCL2ratio were higher, andp53lower, in parthenotes. Among metabolism genes,SLC2A1was downregulated, whileAKR1B1,PTGS2,H6PD, andTXNwere upregulated in parthenotes, andSLC2A5did not differ. Among genes involved in compaction/blastulation,GJA1was downregulated in parthenotes, but no differences were detected withinATP1A1andCDH1. Within parthenotes, the expression levels ofSLC2A1,TP-1, andH6PD, and possiblyAKR1B1, resemble patterns described in female embryos. The pro-apoptotic profile is more pronounced in parthenotes than in embryos, which may differ in their way to channel apoptotic stimuli, throughp66shcandp53respectively, and in their mechanisms to control pluripotency andde novomethylation.

2004 ◽  
Vol 16 (2) ◽  
pp. 144
Author(s):  
P. Kasinathan ◽  
M.F. Nichols ◽  
J.E. Griffin ◽  
J.M. Robl

Chimeras have been used for investigating fundamental aspects of early embryonic development, and differentiation, and for introducing foreign genes into mammals (Robertson et al., 1986 Nature 323, 445–448; Cibelli et al., 1998 Science 280, 1256–1258). The main objective of this study was to determine if the transfer of blastomeres from in vitro-produced (IVP) embryos into cloned, transchromosomic embryos improved the efficiency of producing transchromosomic calves. Cloned embryos were produced using in vitro-matured bovine oocytes and bovine fetal fibroblasts containing a human artificial chromosome (HAC) (Kuroiwa et al., 2002 Nat Biotechnol 20, 889–894). IVP embryos were produced using standard procedures and blastomeres were harvested at the 8–16 cell stage by removing the zona pellucida with protease. Cloned embryos were randomly divided on Day 4 into two groups. One group received 3–4 IVP blastomeres while a second group served as a control (nonmanipulated cloned embryos). After transferring the blastomeres, the chimeric and cloned embryos were placed in culture (Kasinathan et al., 2001 Biol. Reprod. 64, 1487–1493) and on Day 7 development to the blastocyst stage was evaluated. Grades 1 and 2 embryos were transferred; two each per synchronized recipient. Pregnancy maintenance, calving, and calf survival were evaluated in both groups. Presence of a HAC in live calves was evaluated in both fibroblasts and peripheral blood lymphocytes (PBLs) using FISH analysis. Embryo development to the blastocyst stage, maintenance of pregnancy and number of calves born were analyzed using Chi-square. There were no differences in the rate of blastocyst development at day 7 or establishment of pregnancy at 40d (P>0.05). However, pregnancy rate at 120d, and number of calves that developed to term and were alive at birth (chimera 14/54 and clone 4/90), and at 1 month of age (chimera 13/54 and clone 1/90) were lower (P<0.01) for cloned embryos. The proportion of cells containing an HAC in PBLs, was higher in cloned calves (100%) compared to chimeric calves (26%). The HAC retension rates in PBLs in HAC-positive chimeric and cloned calves were 84% and 95%, respectively. These data indicate that, although the proportion of calves retaining an HAC was lower in chimeras compared to clones, more HAC-positive calves were produced in the chimeric treatment from fewer cloned embryos. We speculate that higher rates of development in the chimeras may be related to the normality of the placenta. Future studies will be required to determine the contribution of the IVP blastomeres to both the inner cell mass and trophectoderm. Therefore, a chimeric approach may be useful for improving the efficiency of producing cloned transchromosomic calves.


Biology ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 142
Author(s):  
Iris Martínez-Rodero ◽  
Tania García-Martínez ◽  
Erika Alina Ordóñez-León ◽  
Meritxell Vendrell-Flotats ◽  
Carlos Olegario Hidalgo ◽  
...  

This study was designed to the optimize vitrification and in-straw warming protocol of in vitro-produced bovine embryos by comparing two different equilibration periods, short equilibrium (SE: 3 min) and long equilibrium (LE: 12 min). Outcomes recorded in vitrified day seven (D7) and day eight (D8) expanded blastocysts were survival and hatching rates, cell counts, apoptosis rate, and gene expression. While survival rates at 3 and 24 h post-warming were reduced (p < 0.05) after vitrification, the hatching rates of D7 embryos vitrified after SE were similar to the rates recorded in fresh non-vitrified blastocysts. The hatching rates of vitrified D8 blastocysts were lower (p < 0.05) than of fresh controls regardless of treatment. Total cell count, and inner cell mass and trophectoderm cell counts were similar in hatched D7 blastocysts vitrified after SE and fresh blastocysts, while vitrified D8 blastocysts yielded lower values regardless of treatment. The apoptosis rate was significantly higher in both treatment groups compared to fresh controls, although rates were lower for SE than LE. No differences emerged in BAX, AQP3, CX43, and IFNτ gene expression between the treatments, whereas a significantly greater abundance of BCL2L1 and SOD1 transcripts was observed in blastocysts vitrified after SE. A shorter equilibration vitrification protocol was found to improve post-warming outcomes and time efficiency after in-straw warming/dilution.


2021 ◽  
Author(s):  
Kilian Simmet ◽  
Mayuko Kurome ◽  
Valerie Zakhartchenko ◽  
Horst-Dieter Reichenbach ◽  
Claudia Springer ◽  
...  

The mammalian blastocyst undergoes two lineage segregations, i.e., formation of the trophectoderm and subsequently differentiation of the hypoblast (HB) from the inner cell mass, leaving the epiblast (EPI) the remaining pluripotent lineage. To clarify expression patterns of markers specific for these lineages in bovine embryos, we analyzed day 7, 9 and 12 blastocysts completely derived ex vivo by staining for OCT4, NANOG, SOX2 (EPI) and GATA6, SOX17 (HB) and identified genes specific for these developmental stages in a global transcriptomics approach. To study the role of OCT4, we generated OCT4-deficient (OCT4 KO) embryos via somatic cell nuclear transfer or in vitro fertilization. OCT4 KO embryos reached the expanded blastocyst stage by day 8 but lost of NANOG and SOX17 expression, while SOX2 and GATA6 were unaffected. Blastocysts transferred to recipient cows from day 6 to 9 expanded, but the OCT4 KO phenotype was not rescued by the uterine environment. Exposure of OCT4 KO embryos to exogenous FGF4 or chimeric complementation with OCT4 intact embryos did not restore NANOG or SOX17 in OCT4-deficient cells. Our data show, that OCT4 is required cell-autonomously for the maintenance of pluripotency of the EPI and differentiation of the HB in bovine embryos.


2006 ◽  
Vol 18 (2) ◽  
pp. 172 ◽  
Author(s):  
E. Gómez ◽  
A. Rodríguez ◽  
C. Alonso-Montes ◽  
N. Caamaño ◽  
L. J. Royo ◽  
...  

Production of embryos in vitro with improved inner cell mass (ICM) and high ICM per total cell rate is a major objective in reproductive biotechnology. Exogenous all-trans retinoic acid (ATRA), a vitamin A metabolite, and endogenous retinoid regulate development and differentiation during bovine morula to blastocyst transition in vitro. ATRA binds to retinoic acid-receptor (RAR), and the ATRA isomere 9-cis-retinoic acid (9-cis-RA) binds to both RAR and the retinoid X receptor (RXR). The unspecific binding of 9-cis-RA to receptors makes it difficult to study RXR transactivation. Therefore, in this work we studied blastocyst development and cell counts by using a specific synthetic RXR agonist [LG100268 LG; a gift of Ligand Laboratories] as opossed to the effect exerted by ATRA upon RAR binding. Cumulus-oocyte complexes from slaughterhouse ovaries were matured and fertilized in vitro. Presumptive zygotes were cultured in B2 medium with Vero cells until 139 h post-insemination (Day 6), the time at which embryos [morulae (e90%) + early blastocysts] underwent treatments for 48 h in 400 �L of SOFaaci + 5% FCS. Data (5 replicates per experiment) were analyzed by CATMOD for effects, processed by GLM and Duncan's test, and expressed as LSM � SE (a,b,c P d 0.05). After a LG dose-response experiment (n = 480 morulae), blastocysts rates from LG 1 �M on Day 7 were higher than LG 10 �M, LG 0.1 �M, and LG 0 �M (Day 7: 42.8 � 4.1 vs. 34.4 � 3.7, 36.8 � 3.7, and 32.4 � 3.7, respectively). On Day 8, LG 1 �M also yielded more blastocysts than LG 0.1 �M (50 � 4.2 vs. 44.4 � 3.7, respectively). By differential cell counting (n = 113 blastocysts), hatched blastocysts with LG 10 �M showed proliferation in the ICM, while trophectoderm (TE) cells decreased conversely to LG concentration. These effects were not obvious in expanded blastocysts. In a subsequent experiment (n = 340 morulae), ATRA led to blastocysts rates on Day 8 that were higher than negative, untreated controls, but not different from LG 1 �M (42.4 � 2.4 vs. 33.1 � 2.0 and 36.0 � 2.4, respectively). ATRA and LG 1 increased TE in expanded blastocysts (n = 42) (102 � 13.2 and 96.23 � 13.2, respectively vs. 72.8 � 10.9 in the untreated group) but not in their hatched counterparts (n = 44). There were no differences in the ICM; but percentages of ICM per total cells were higher in hatched blastocysts cultured with ATRA than in expanded LG 1 �M blastocysts and expanded controls (39.5 � 5.5 vs. 24.2 � 5.7, and 20.9 � 4.7, respectively). Manipulation of retinoid receptor-specific pathways make it possible to control blastocyst development and differentiation, leading to embryos of improved quality and viability. Work is in progress to analyze gene expression in these blastocysts. This work was supported by grant MCYT, project AGL-2005-04479.


2007 ◽  
Vol 19 (1) ◽  
pp. 204
Author(s):  
C. De Frutos ◽  
A. Rodríguez ◽  
C. Díez ◽  
J. N. Caamaño ◽  
N. Facal ◽  
...  

Leukemia Inhibitory Factor (LIF) is a cytokine with potential to influence embryonic quality and proliferation within the inner cell mass (ICM). However, conflicting effects of LIF have been reported with in vitro-produced (IVP) bovine embryos, in spite of LIF receptor (LIFr) and gp130 transcripts being expressed at all stages during pre-implantation development (Niemann and Wrenzycki 2000 Theriogenology 53, 21–34). As there is no commercially available bovine LIF (bLIF), researchers have used human LIF (hLIF) because of its greater sequence homology compared to murine LIF (mLIF). However, mLIF has been not compared with hLIF in culture with bovine embryos; thus this was the aim of this study. Cumulus–oocyte complexes from slaughterhouse ovaries were matured and fertilized in vitro and presumptive zygotes cultured in modified synthetic oviduct fluid with 6 g L-1 BSA. At 139 h post-insemination (Day 6), a total of 423 morulae (&gt;90%) and early blastocysts were cultured for 48 h with: (1) 100 ng mL-1 recombinant mLIF (Sigma-Aldrich Quimica SA, Madrid, Spain); (2) 100 ng mL-1 recombinant hLIF (Sigma); and (3) no LIF. Data (6 replicates) were processed by GLM and Duncan&apos;s test, and expressed as LSM � SE (ab: P &lt; 0.05; xy: P &lt; 0.01). Development was recorded up to the hatched blastocyst stage and cells were differentially counted in the ICM and trophectoderm (TE) following the method described by Thouas et al. (2001 Reprod. Biomed. Online 3, 25–29). There were no differences within developmental rate on Day 7, but reduced blastocyst rates were observed on Day 8 between hLIF (42.0 � 3.9a and 27.2 � 3.3a) and controls (57.7 � 3.9b and 38.9 � 3.3b) at the medium and expanded stages, respectively, whereas mLIF had no effect (47.4 � 3.9 and 32.3 � 3.3). Contrary to development, Day 8 blastocysts showed decreased cell counts in both the ICM and the ICM/total cell proportions in the presence of mLIF (19.1 � 3.1x and 13.8 � 2.4x vs. 32.6 � 3.0y and 24.8 � 2.3y for controls, respectively), whereas hLIF had no effect (29.7 � 3.1y and 20.9 � 2.4y). No changes were seen in TE and total cell counts. The disparate effects exhibited by hLIF and mLIF during blastocyst formation may reflect the fact that these compounds are inappropriate to replace bLIF, and/or endogenous LIF probably suffices during bovine development. In fact, mouse embryonic development and blastocyst cell numbers decrease in murine embryos injected with LIF antisense nucleotides (Cheng et al. 2004 Biol. Reprod. 70, 1270–1276). Furthermore, embryonic stem (ES)-like cell derivation in bovine is possible with (Saito et al. 2003 Biochem. Biophys. Res. Com. 309, 104–113) and without (Mitalipova et al. 2001 Cloning 3, 59–67) exogenous LIF. Therefore, strategies to investigate LIF signalling in bovine embryos and stem cells should be reconsidered. This work was supported by Grant AGL2005-04479.


2019 ◽  
Vol 71 (3) ◽  
pp. 723-731
Author(s):  
N.V. Sollecito ◽  
E.C.M. Pereira ◽  
J.G.V. Grázia ◽  
B.P. Neves ◽  
B.V.R. Couto ◽  
...  

ABSTRACT The aim of this study was to evaluate the supplementation of embryo culture medium with antioxidant obtained from oily extract of Lippia origanoides on in vitro blastocyst development and quality. Oocytes collected from slaughterhouse ovaries were matured and fertilized in vitro following standard laboratory procedures. Zygotes were cultured in SOF medium supplemented according to the following treatments: T1 embryo culture medium without antioxidant supplementation; T2)50μM/mL Cysteamine; T3)2.5μg/mL; T4)5.0μg/mL and T5)10.0μg/mL of antioxidant obtained from oily extract of Lippia origanoides. On the seventh day of culture, the blastocysts were fixed and evaluated for apoptosis rates, number of total cell and inner cell mass cells by means of the TUNEL Test. The use of antioxidants during cultivation did not increase (P> 0.05) the final blastocyst production rate. The treatments T2, T3, T4 and T5 had the lowest (P< 0.05) apoptotic indexes (4.5±1.1%, 8.4±2.5%, 3.4±1.1% and 5.5±0.9%, respectively) when compared to T1 treatment (10.0±1.4%). The number of inner cell mass did not differ (P> 0.05) among embryos from different treatments. The addition of antioxidant obtained from oily extract of Lippia origanoides reduces the apoptosis rate and improves the quality without increasing the total in vitro production of bovine embryos.


Reproduction ◽  
2003 ◽  
pp. 91-99 ◽  
Author(s):  
R Augustin ◽  
P Pocar ◽  
C Wrenzycki ◽  
H Niemann ◽  
B Fischer

Insulin improves development of mammalian preimplantation embryos and, in addition to the regulation of glucose transport, it exerts mitogenic and anti-apoptotic activities. The expression of glucose transporters (Glut) mediating the uptake of this essential energy substrate is critical for embryo survival. An impaired expression of Glut leads to an increase in apoptosis at the blastocyst stage and involves Bax. The various effects of insulin were unravelled by supplementing the in vitro culture medium with insulin (1.7 micromol l(-1)) and (i) the rates of cleavage and blastocyst development were recorded; (ii) mitogenic activity was studied by determining the total number of blastocyst cells and the ratio between trophectoderm and inner cell mass (ICM) cells; (iii) the frequency of apoptosis in blastocysts was determined by the TdT-mediated duTP nick-end labelling (TUNEL) assay and by quantification of the relative amounts of mRNA for Bax and Bcl-XL; and (iv) expression for Glut1, Glut3 and Glut8 transcripts was compared between embryos cultured in the presence or absence of insulin. Insulin increased rates of cleavage (81.2+/-2.2 (control) to 86.0+/-2.5) and blastocyst development (24.7+/-1.9 to 31.3+/-1.2), and number of blastocyst cells (123.7+/-6.0 to 146.3+/-6.6); the increase in the number of blastocyst cells was due to a significantly higher number of trophectoderm cells (82.3+/-5.0 versus 100.3+/-5.5). Blastocysts derived from cultures supplemented with insulin showed a significant decrease in apoptosis as determined by the TUNEL assay (14.8+/-0.9 to 12.2+/-0.7). No effects of insulin on the mRNA expression of Glut isoforms and Bax and Bcl-XL were found. These results demonstrate that the mitogenic and anti-apoptotic effects of insulin on bovine preimplantation embryos did not correlate with changes in the amounts of mRNA for the glucose transporter isoforms Glut1, -3 and -8, or transcripts for Bax and Bcl-XL.


2004 ◽  
Vol 16 (2) ◽  
pp. 194 ◽  
Author(s):  
B. Avery ◽  
T. Greve

Normally blastocyst rates are used to document the efficiency of an IVP system, because routine transfer of all embryos is not a realistic approach. Even though pregnancies are established, there will only be a weak correlation to a given IVP system because the embryos for transfer have been highly selected. The aim of this study was to analyze the in vitro development of bovine IVM/IVF oocytes after culture in SOFaa medium with or without the presence of bovine oviduct cells (BOEC) under 5% or 20% O2 in 5% CO2 and 38.5°C in order to select the optimal IVC system under the given circumstances. The study was based on six replicates and 2373 inseminated oocytes retrieved from abattoir ovaries, and the quality markers were Day 8 blastocyst rates (BL per inseminated oocytes), morphology, kinetics, and cell count. From the relative proportion of BL, XB, and H, an average developmental stage (kinetics) could be assigned. Ranking was based on BL rate, rates of A and B graded BL, and the average developmental stage. Established standard procedures were used for IVM (23h in DMEM with 5% serum and eCG/hCG), and IVF (23h in TALP with heparin), and the inseminated oocytes were randomly allocated into four IVC groups (5% O2, 5% O2/BOEC; 20% O2, and 20% O2/BOEC) to be cultured in groups of 25 in 0.1mL oil-covered droplets of SOFaa with 5% serum (Holm P et al. 1999 Theriogenology 52, 683–700). The morphology was graded as A: compact and distinct inner cell mass, regular morphology of trophoblast cells, development corresponding to the expected; B: smaller or less distinct inner cell mass, a few degenerated trophoblast cells or slight fragmentation, development corresponding to the expected; C: dispersed or no inner cell mass, degenerated trophoblast cells or much fragmentation, developmental arrest. For cell counts the zona and cytoplasm from the individual blastocysts were lysed in 0.01M HCL and 0.1% Tween 20, leaving the isolated nuclei to be fixed in 3:1 methanol:acetic acid on a slide (Viuff D et al. 2002 Biol. Reprod. 63, 1143–1148). The kinetics were assessed as hatched per total BL at Day 8 (Fisher’s exact test, P&lt;0.01). The BL rates were significantly lower in the 20% O2 group (23% v. 31%, 32%, 33% in the other groups, respectively), while the hatching rate was significantly higher in the 5% O2 group (35% v. 12%, 10%, 18%). The frequency of A-quality blastocysts was significantly higher in the 5% O2 and 20% O2/BOEC groups (46%, 41%) than in the 20% O2 and 5% O2/BOEC groups (27%, 22%). The B-quality frequency did not differ between the four groups (41%, 40% v. 48%, 45%), whereas the C-quality inversely reflected the A-quality (13%, 19% v. 25%, 33%). There were no differences in the cell counts between the same quality grades in the four systems. An A-grade expanded BL had 134±50 cells (mean±SD), a B-grade 94±45; a hatched A-grade BL had 168±48 cells, a B-grade 143±54. This study shows that regardless of differences in average developmental stages (kinetics) and morphology, similar blastocyst rates can be obtained. Using these criteria our four IVC groups would be ranked as (1) 5% O2, (2) 20% O2/BOEC, (3) 5% O2/BOEC (4) 20% O2. In conclusion, when evaluating the suitability of an IVP system, morphology and kinetics should be considered as well as blastocyst rates.


2007 ◽  
Vol 19 (1) ◽  
pp. 205
Author(s):  
E. Gómez ◽  
A. Rodríguez ◽  
C. De Frutos ◽  
J. N. Caamaño ◽  
N. Facal ◽  
...  

Neurotrophins (NTs) mediate human embryonic stem (hES) cell survival and may also improve methods for hES cell derivation (Pyle et al. 2006 Nature Biotech. 24, 344–350) and quality of the inner cell mass (ICM). We searched published microarray data sets for tyrosine kinase receptors (TRK) (geo data base: GSM27469, GSM27470, GSM27471). The analysis suggested that bovine embryos in vitro at unspecified stages express TRKA, for nerve growth factor (NGF); TRKC, for neurotrophin-3 (NT3); and TRKB, for both neurotrophin-4 (NT4) and brain-derived neurotrophic factor (BDNF). NTs functionally cooperate among them and also with basic fibroblast growth factor (bFGF) (Pyle et al. 2006; Logan et al. 2006 Brain 129, 490–502). Experiments in progress include detection of TRK expression by RT-PCR at defined development stages, and analysis of embryonic development with NTs and without bFGF. In this work we cultured embryos matured and fertilized in vitro from slaughterhouse oocytes for 8 days in SOF medium with 6 g L-1 BSA and 2 ng mL-1 bFGF (negative control). Development was monitored and cells were differentially counted in the ICM and trophectoderm (TE) of expanded and hatched blastocysts. NTs were used during the whole culture at 20 ng mL-1 as single (4 experimental groups: NGF, NT3, NT4, and BDNF) or as pooled (1 group) NT compounds. Data (5 replicates; 1403 oocytes) were processed by GLM and Duncan&apos;s test, and expressed as LSM � SE (a,b: P &lt; 0.05). At Day 3, no differences were found at the 5- to 8-cell stage, but NT3 and NT4 increased the proportions of embryos at the 8- to 16-cell stage (19.1 � 2.2 and 20.5 � 2.2, respectively, vs. 12.9 � 2.2 to 13.7 � 2.2 within the other groups). On Day 6, NT4 yielded more morulae than controls, BDNF, and NGF (35.3 � 2.7 vs. 26.1 � 2.7, 27.4 � 2.7, and 27.8 � 2.7, respectively), and did not differ from the other groups. NT4 produced more total Day 7 blastocysts than NT3 and BDNF (12.5 � 2.2 vs. 8.1 � 2.2 and 9.9 � 2.2, respectively), whereas there were no differences within medium and expanded blastocysts and Day 8 blastocysts. Proportions of morulae that formed blastocysts were appreciably lower than in concomitant experiments without bFGF. Pooled NTs showed decreased values as compared to some single NTs within the ICM [13.0 � 4.0 vs. 29.1 � 4.6 (NT3) and 24.9 � 4.3 (NGF)], the TE [89.0 � 8.4 vs. 120 � 11.9 (BDNF)], total cells [102.0 � 8.5 vs. 134.0 � 9.9 (NT3), and 140.0 � 12.1 (BDNF)], and tended to differ (P = 0.08) within ICM/total cells [13.1 � 3.1 vs. 21.6 � 3.6 (controls) and 22.2 � 3.6 (NT3)]. Controls differed from BDNF (TE: 88.1 � 9.8 vs. 120.2 � 11.9; total cells: 110.8 � 10.0 vs. 140.0 � 12.1, respectively), and from NT4 for ICM/total cells (21.6 � 3.6 vs. 11.5 � 2.9, respectively). NT4 is likely to exert a role during early embryonic development. However, these blastocysts showed decreased cell counts in the ICM, probably reflected in the pooled NTs group. Targeting proliferation stimuli specifically to the ICM is difficult to get when the ICM is enclosed in the embryo, in contrast with the isolated ICM or the derived stem cells. This work was supported by Grant AGL2005-04479.


2010 ◽  
Vol 22 (1) ◽  
pp. 236 ◽  
Author(s):  
B. Trigal ◽  
E. Gómez ◽  
C. Diez ◽  
J. N. Caamaño ◽  
I. Molina ◽  
...  

We reported that the presence of activin during in vitro culture improves embryo development without changing the cell distribution in the blastocyst (Díez et al. 2009 AETE in press). In the present work, we aimed to analyze the morula stage as a putative milestone to activin exert differential effects. Day -5 morulae were produced with IVMFC oocytes from abattoir ovaries, using SOF with amino acids, myo-inositol, and 3 g L-1 of BSA as a culture medium. Embryo culture contained 10 ng mL-1 or 0 ng mL-1 of activin from Day -3 to Day -5. Early morulae (n = 543 out of 1099 cultured oocytes) were selected and subsequently cultured with or without 10 ng mL-1 of activin up to Day -8. Embryo development was daily monitored and cells differentially counted in Day -8 expanded blastocysts. (Thouas et al. 2001 Reprod. Biomed. 2001 3, 25-29). Data were analyzed by general linear model and presented as least squares means ± SEM. Activin from Days 3 to 5 did not change Day -5 morulae rates (P > 0.8). In morulae produced without activin (Days 5 to 8 and control), a treatment with activin from Days 5 to 8 improved total blastocyst rates v. controls, both in Day -7 and Day -8 (50.9 ± 3.6 v. 32.6 ± 3.6 and 60.8 ± 2.9 v. 42.3 ± 2.9, respectively; P < 0.01). Similarly, Day -7 expansion rates with activin (Days 5 to 8) were higher than controls (14.6 ± 1.8 v. 8.6 ± 1.8; P < 0.03). However, the above effects were not the same as those observed in morulae produced with activin (Days 3 to 5 and Days 3 to 8), where blastocyst development between activin treatment and controls only significantly differed in expansion rates on Day -7 (14.9 ± 1.8 v. 5.8 ± 1.8, respectively; P < 0.03). Morulae treated with activin (Days 5 to 8) yielded Day -7, total and expanded blastocyst rates, higher than morulae produced with activin (Days 3 to 5) (50.9 ± 3.6 v. 37.4 ± 3.6 and 14.6 ± 5.8 v. 5.8 ± 1.8, respectively; P < 0.03). Expansion rates on Day -8 were numerically higher within morulae produced and/or treated with activin (Days 3 to 8, Days 5 to 8, and Days 3 to 5) (values between 26.7 ± 2.6 and 27.4 ± 2.6) than in controls without activin at any time (19.2 ± 2.6) (P > 0.05). Trophectoderm (TE) cell numbers were reduced in embryos produced and/or treated with activin (Days 3 to 8, Days 3 to 5, and Days 5 to 8) (values between 109.4 ± 7.6 and 115.3 ± 7.9) as compared with untreated controls (141.2 ± 10.1) (P < 0.05). In morulae produced without activin, total cell counts were lower with activin being present from Day -5 to Day -8 (154.0 ± 8.8 v. 128.4 ± 7.2; P < 0.05). Inner cell mass (ICM) and ICM/total cell ratio were not affected by the presence of activin (P > 0.05). Activin did not change Day -5 morulae rates, although subsequent blastocyst development was in part affected by the presence of activin before the morula stage. Interestingly, improvements in blastocyst development, including expansion rates, triggered by activin led to reduced TE and unaltered ICM cell counts, suggesting that activin inhibits TE differentiation. Support: Cajastur (B. Trigal). MCINN: M. Muñoz (RYC08-03454); D. Martín (PTA2007-0268-I); INIA (I. Molina); Project HF2007-0126.


Sign in / Sign up

Export Citation Format

Share Document