Co-culture with pig membrana granulosa cells modulates the activity of cdc2 and MAP kinase in maturing cattle oocytes

Zygote ◽  
1996 ◽  
Vol 4 (3) ◽  
pp. 247-256 ◽  
Author(s):  
Jan Motlík ◽  
Peter Šutovský ◽  
Jaroslav Kalous ◽  
Michal Kubelka ◽  
Jiří Moos ◽  
...  

SummaryBovine cumulus-enclosed oocytes, initially cultured up to diakinesis (8h of initial culture) or metaphase I (12h of initial culture), were subsequently co-cultured for 6 h in contact with pig membrana granulosa (PMG) cells and then assayed for histone H1 and MAP kinase activities. In addition, the phosphorylation state of ERK 1,2 proteins was determined by Western blotting. The alterations in nuclear envelope breakdown, meiotic spindle formation and the patterns of chromosome condensation were analysed by immunofluorescence and transmission electron microscopy. The diakinesis-stage oocytes (initially cultured for 8h) already possessed high histone H1 kinase and MAP kinase activities that were correlated with condensed and partially individualised chromosomes. The ERK 1 and most ERK 2 proteins were partly phosphorylated. Following the 6h co-culture of these oocytes with PMG a rapid decrease in MAP kinase activity and a slower decrease in histone H1 kinase occurred, as well as ERK 1 and ERK 2 dephosphorylation. Both kinase activities and ERK 1,2 phosphorylation were fully restored following the release of the oocytes from co-culture and a subsequent culture in the absence of PMG. Moreover, the clumped bivalents were reindividualised and 56% of these oocytes reached metaphase II after 20 h of culture without PMG. The metaphase I oocytes, initially cultured for 12 h, displayed a fusiform meiotic spindle and a metaphase array of chromosomal bivalents, accompanied by high levels of both histone H1 and MAP kinase activity. Co-culture of MI oocytes with PMG abolished the activity of both kinases and caused the dephosphorylation of ERK 1 and ERK 2. Furthermore, the spindle microtubules were depolymerised and the chromosomal bivalents clumped into a single mass. Neither of the protein kinase activities nor the meiotic spindle were restored following subsequent culture in the absence of PMG for up to 20 h. These observations indicate that under in vitro conditions membrana granulosa cells can cause a prompt decrease in histone H1 and MAP kinase activities, and metaphase I oocytes. While these events are fully reversible in late diakinesis oocytes, metaphase I oocytes did not complete maturation after release from co-culture.

Zygote ◽  
2001 ◽  
Vol 9 (4) ◽  
pp. 309-316 ◽  
Author(s):  
Carsten Krischek ◽  
Burkhard Meinecke

In the present study the effects of roscovitine on the in vitro nuclear maturation of porcine oocytes were investigated. Roscovitine, a specific inhibitor of cyclin-dependent protein kinases, prevented chromatin condensation in a concentration-dependent manner. This inhibition was reversible and was accompanied by non-activation of p34cdc2/histone H1 kinase. It also decreased enzyme activity of MAP kinase, suggesting a correlation between histone H1 kinase activation and the onset of chromatin condensation. The addition of roscovitine (50 μM) to extracts of metaphase II oocytes revealed that the MAP kinase activity was not directly affected by roscovitine, which indicates a possible link between histone H1 and MAP kinase. Chromatin condensation occurred between 20 and 28 h of culture of cumulus-oocyte complexes (COCs) in inhibitor-free medium (germinal vesicle stage I, GV1: 74.6% and 13.7%, respectively). Nearly the same proportion of chromatin condensation was detected in COCs incubated initially in inhibitor-free medium for 20-28 h and subsequently in roscovitine-supplemented medium (50 μM) for a further 2-10 h (GV I: 76.2% and 18.8%, respectively). This observation indicates that roscovitine prevents chromatin condensation even after an initial inhibitor-free cultivation for 20 h. Extending this initial incubation period to ≥22 h led to an activation of histone H1 and MAP kinase and increasing proportions of oocytes exhibiting chromatin condensation in the presence of roscovitine. It is concluded that histone H1 kinase is involved in the induction of chromatin condensation during in vitro maturation of porcine oocytes.


1993 ◽  
Vol 13 (3) ◽  
pp. 1480-1488
Author(s):  
H M van der Velden ◽  
M J Lohka

Progression through mitosis requires the inactivation of the protein kinase activity of the p34cdc2-cyclin complex by a mechanism involving the degradation of cyclin. We have examined the stability in Xenopus egg extracts of radiolabeled Xenopus or sea urchin B-type cyclins synthesized in reticulocyte lysates. Xenopus cyclin B2 and sea urchin cyclin B were stable in metaphase extracts from unfertilized eggs but were specifically degraded following addition of Ca2+ to the extracts. The degradation of either cyclin was inhibited by the addition of an excess of unlabeled Xenopus cyclin B2 but not by the addition of a number of control proteins. A truncated protein containing only the amino terminus of Xenopus cyclin B2, including sequences known to be essential for cyclin degradation in other species, also inhibited cyclin degradation, even though the truncated protein was stable in extracts following Ca2+ addition. The addition of the truncated protein did not stimulate histone H1 kinase activity in extracts but prevented the loss of H1 kinase activity that normally follows Ca2+ addition to metaphase extracts. When the amino-terminal fragment was added to extracts capable of several cell cycles in vitro, progression through the first mitosis was inhibited and elevated histone H1 kinase activity was maintained. These results indicate that although the amino terminus of cyclin does not contain all of the information necessary for cyclin destruction, it is capable of interacting with components of the cyclin destruction pathway and thereby preventing the degradation of full-length cyclins.


Zygote ◽  
2004 ◽  
Vol 12 (1) ◽  
pp. 65-70 ◽  
Author(s):  
Xiao-Fang Sun ◽  
Wei-Hua Wang ◽  
David L. Keefe

The present study was designed to examine the effects of overheating on meiotic spindle morphology within in vitro matured human oocytes using a polarized light microscope (Polscope). Immature human oocytes at either germinal vesicle or metaphase I stage were cultured in vitro for 24–36 h until they reached metaphase II (M-II) stage. After maturation, oocytes at M-II stage were imaged in the living state with the Polscope at 37, 38, 39 and 40 °C for up to 20 min. After heating, oocytes were returned to 37 °C and then imaged for another 20 min at 37 °C. The microtubules in the spindles were quantified by their maximum retardance, which represents the amount of microtubules. Spindles were intact at 37 °C during 40 min of examination and their maximum retardance (1.72–1.79) did not change significantly during imaging. More microtubules were formed in the spindles heated to 38 °C and the maximum retardance was increased from 1.77 before heating to 1.95 at 20 min after heating. By contrast, spindles started to disassemble when the temperature was increased to 39 °C for 10 min (maximum retardance was reduced from 1.76 to 1.65) or 40 °C for 1 min (maximum retardance was reduced from 1.75 to 1.5). At the end of heating (20 min), fewer microtubules were present in the spindles and the maximum retardance was reduced to 0.8 and 0.78 in the oocytes heated to 39 °C and 40 °C, respectively. Heating to 40 °C also induced spindles to relocate in the cytoplasm in some oocytes. After the temperature was returned to 37 °C, microtubules were repolymerized to form spindles, but the spindles were not reconstituted completely compared with the spindles imaged before heating. These results indicate that spindles in human eggs are sensitive to high temperature. Moreover, maintenance of an in vitro manipulation temperature of 37 °C is crucial for normal spindle morphology.


2016 ◽  
Vol 119 (suppl_1) ◽  
Author(s):  
Tomohiro Yokota ◽  
Jin Li ◽  
Qing Zhang ◽  
Yichen Ding ◽  
Kevin Sung ◽  
...  

Background: Left ventricle (LV) and right ventricle (RV) in mouse heart undergo dramatically different chamber-specific remodeling after birth, leading to rapid increase in LV vs. RV chamber size. However, the underlying regulatory mechanism mediating chamber specific remodeling process remains enigmatic. Results and Methods: In neonatal mouse heart, p38 MAP kinase activity is dynamically activated in a chamber specific manner. p38 activity is specifically elevated in RV comparing to LV at E18.5, postnatal day 3 (P3) and P7 stages whereas p38 activity is lower in both ventricles at P0 and P1. In mouse heart with cardiomyocyte specific-knockout of p38α and β (p38ab-cdKO), total p38 activity was diminished in both chambers. The p38ab-cdKO mice had significant neonatal lethality associated with RV specific chamber enlargement and significant increase in both RV wall thickness (RVW) and inner diameter of RV (RVID) as early as P3. Interestingly, p38 inactivation suppressed myocyte apoptotic activity specifically in RV while increased RV myocyte proliferation and hypertrophy during neonatal period. Unexpectedly, RNA-seq results implicated Xbp1 mediated transcriptional regulation significantly contributing to p38 dependent transcriptome reprogramming in RV. Indeed, IRE1α expression in neonatal cardiomyocyte is sufficient to induce proliferation in vitro. Furthermore, knockdown of Xbp1 blunted p38 inhibition-induced myocyte proliferation, suggesting that IRE1a/Xbp1 mediate p38 signaling in neonatal myocyte proliferation. Conclusion: Chamber-specific remodeling in neonatal heart involves temporally regulated and RV specific p38 MAP kinase activity. RV specific myocyte proliferation and hypertrophy concurrent with RV specific programmed myocyte death is orchestrated by two innate stress-response pathways, p38 and Xbp1.


1998 ◽  
Vol 111 (17) ◽  
pp. 2497-2505 ◽  
Author(s):  
R. Philipova ◽  
M. Whitaker

A MBP kinase activity increases at mitosis during the first two embryonic cell cycles of the sea urchin embryo. The activity profile of the MBP kinase is the same both in whole cell extracts and after immunoprecipitation with an anti-MAP kinase antibody (2199). An in-gel assay of MBP activity also shows the same activity profile. The activity is associated with the 44 kDa protein that cross-reacts with anti-MAP kinase antibodies. The 44 kDa protein shows cross-reactivity to anti-phosphotyrosine and MAP kinase-directed anti-phosphotyrosine/phosphothreonine antibodies at the times that MBP kinase activity is high. The 2199 antibody co-precipitates some histone H1 kinase activity, but the MBP kinase activity cannot be accounted for by histone H1 kinase-dependent phosphorylation of MBP. The MAP kinase 2199 antibody was used to purify the MBP kinase activity. Peptide sequencing after partial digestion shows the protein to be homologous to MAP kinases from other species. These data demonstrate that MAP kinase activation during nuclear division is not confined to meiosis, but also occurs during mitotic cell cycles. MAP kinase activity in immunoprecipitates also increases immediately after fertilization, which in the sea urchin egg occurs at interphase of the cell cycle. Treating unfertilized eggs with the calcium ionophore A23187 stimulates the increase in MAP kinase activity, demonstrating that a calcium signal can activate MAP kinase and suggesting that the activation of MAP kinase at fertilization is due to the fertilization-induced increase in cytoplasmic free calcium concentration. This signalling pathway must differ from the pathway responsible for calcium-induced inactivation of MAP kinase activity that is found in eggs that are fertilized in meiotic metaphase.


1993 ◽  
Vol 13 (3) ◽  
pp. 1480-1488 ◽  
Author(s):  
H M van der Velden ◽  
M J Lohka

Progression through mitosis requires the inactivation of the protein kinase activity of the p34cdc2-cyclin complex by a mechanism involving the degradation of cyclin. We have examined the stability in Xenopus egg extracts of radiolabeled Xenopus or sea urchin B-type cyclins synthesized in reticulocyte lysates. Xenopus cyclin B2 and sea urchin cyclin B were stable in metaphase extracts from unfertilized eggs but were specifically degraded following addition of Ca2+ to the extracts. The degradation of either cyclin was inhibited by the addition of an excess of unlabeled Xenopus cyclin B2 but not by the addition of a number of control proteins. A truncated protein containing only the amino terminus of Xenopus cyclin B2, including sequences known to be essential for cyclin degradation in other species, also inhibited cyclin degradation, even though the truncated protein was stable in extracts following Ca2+ addition. The addition of the truncated protein did not stimulate histone H1 kinase activity in extracts but prevented the loss of H1 kinase activity that normally follows Ca2+ addition to metaphase extracts. When the amino-terminal fragment was added to extracts capable of several cell cycles in vitro, progression through the first mitosis was inhibited and elevated histone H1 kinase activity was maintained. These results indicate that although the amino terminus of cyclin does not contain all of the information necessary for cyclin destruction, it is capable of interacting with components of the cyclin destruction pathway and thereby preventing the degradation of full-length cyclins.


Zygote ◽  
2003 ◽  
Vol 11 (1) ◽  
pp. 53-59 ◽  
Author(s):  
Yong Cheng ◽  
Lei Lei ◽  
Duan-Cheng Wen ◽  
Zi-Yu Zhu ◽  
Qing-Yuan Sun ◽  
...  

Abnormal oocyte spindle is frequently associated with the infertility of aged women. Directly manipulating the metaphase I (MI) spindle may be a feasible method to overcome this kind of problem. Here, we report that the MI meiotic spindle can be removed from MI mouse oocytes and will autonomously divide into two daughter cells with the same size, morphology and an equal number of chromosomes after culture for 5 h in maturation medium. The division rate of the MI spindle reached 56% after 10-15 h of culture. After transferring the MI meiotic spindle into synchronous ooplasm by electrofusion, about 61% of the reconstructed oocytes continued to complete the first meiosis and extruded a normal first polar body. The matured reconstructed oocytes can also be fertilised. Approximately 50% of the 2-cell embryos developed to the morula stage after in vitro culture.


Sign in / Sign up

Export Citation Format

Share Document