Development of mouse embryos derived from oocytes reconstructed by metaphase I spindle transfer

Zygote ◽  
2003 ◽  
Vol 11 (1) ◽  
pp. 53-59 ◽  
Author(s):  
Yong Cheng ◽  
Lei Lei ◽  
Duan-Cheng Wen ◽  
Zi-Yu Zhu ◽  
Qing-Yuan Sun ◽  
...  

Abnormal oocyte spindle is frequently associated with the infertility of aged women. Directly manipulating the metaphase I (MI) spindle may be a feasible method to overcome this kind of problem. Here, we report that the MI meiotic spindle can be removed from MI mouse oocytes and will autonomously divide into two daughter cells with the same size, morphology and an equal number of chromosomes after culture for 5 h in maturation medium. The division rate of the MI spindle reached 56% after 10-15 h of culture. After transferring the MI meiotic spindle into synchronous ooplasm by electrofusion, about 61% of the reconstructed oocytes continued to complete the first meiosis and extruded a normal first polar body. The matured reconstructed oocytes can also be fertilised. Approximately 50% of the 2-cell embryos developed to the morula stage after in vitro culture.

Reproduction ◽  
2006 ◽  
Vol 132 (6) ◽  
pp. 859-867 ◽  
Author(s):  
Xiao-Qian Meng ◽  
Ke-Gang Zheng ◽  
Yong Yang ◽  
Man-Xi Jiang ◽  
Yan-Ling Zhang ◽  
...  

Microfilaments (actin filaments) regulate various dynamic events during meiotic maturation. Relatively, little is known about the regulation of microfilament organization in mammalian oocytes. Proline-rich tyrosine kinase2 (Pyk2), a protein tyrosine kinase related to focal adhesion kinase (FAK) is essential in actin filaments organization. The present study was to examine the expression and localization of Pyk2, and in particular, its function during rat oocyte maturation. For the first time, by using Western blot and confocal laser scanning microscopy, we detected the expression of Pyk2 in rat oocytes and found that Pyk2 and Try402 phospho-Pyk2 were localized uniformly at the cell cortex and surrounded the germinal vesicle (GV) or the condensed chromosomes at the GV stage or after GV breakdown. At the metaphase and the beginning of anaphase, Pyk2 distributed asymmetrically both in the ooplasm and the cortex with a marked staining associated with the chromosomes and the region overlying the meiotic spindle. At telophase, Pyk2 was observed in the cleavage furrows in addition to its cortex and cytoplasm localization. The dynamics of Pyk2 were similar to that of F-actin, and this kinase was found to co-localize with microfilaments in several developmental stages during rat oocyte maturation. Microinjection of Pyk2 antibody demolished the microfilaments assembly and also inhibited the first polar body (PB1) emission. These findings suggest an important role of Pyk2 for rat oocyte maturation by regulating the organization of actin filaments.


2021 ◽  
Vol 10 (2) ◽  
pp. 46
Author(s):  
Sepvian Dewi Kurniawati ◽  
Suryanie Sarudji ◽  
Widjiati Widjiati

This study was aimed to determine the effect of urea in maturation medium on in vitro oocyte maturation rate. The medium used was TCM-199 added with Hepes, NaHCO3, Kanamycin 0.15 IU/mL, PMSG, 0.15 IU/mL hCG, and 10% FBS. Cumulus oocyte complexes (COCs) of cows derived from follicle aspiration were divided into three groups. In control group (P0), the COCs were matured in vitro in a maturation medium without urea addition, meanwhile in the P1 and P2 groups, the medium was added with urea 20 and 40 mg/dL, respectively. Each petri dish contained three drops of maturation medium (300 µl/drops) according to the groups. Microdrops were coated with mineral oil and then incubated in a 5% CO2 incubator, at 39 ˚C with maximum humidity. Aceto-orcein staining was conducted to evaluate the maturation of oocytes based on the achievement of metaphase II phase that is indicated by the presence of metaphase plate and/or first polar body. The result showed that the oocyte maturation rates of P0, P1, and P2 were 51.25, 52.43 (p >0.05), and 46.88 % (p <0.05) respectively. It could be concluded that the presence of urea at 40 mg/dL in maturation medium reduced the percentage of bovine oocyte maturation in vitro.


Author(s):  
Lin Meng ◽  
Hongmei Hu ◽  
Zhiqiang Liu ◽  
Luyao Zhang ◽  
Qingrui Zhuan ◽  
...  

[Ca2+]i is essential for mammalian oocyte maturation and early embryonic development, as those processes are Ca2+ dependent. In the present study, we investigated the effect of [Ca2+]i on in vitro maturation and reprogramming of oocytes in a lower calcium model of oocyte at metaphase II (MII) stage, which was established by adding cell-permeant Ca2+ chelator BAPTA-AM to the maturation medium. Results showed that the extrusion of the first polar body (PB1) was delayed, and oocyte cytoplasmic maturation, including mitochondrial and endoplasmic reticulum distribution, was impaired in lower calcium model. The low-calcium-model oocytes presented a poor developmental phenotype of somatic cell nuclear transfer (SCNT) embryos at the beginning of activation of zygotic genome. At the same time, oxidative stress and apoptosis were observed in the low-calcium-model oocytes; subsequently, an RNA-seq analysis of the lower-calcium-model oocytes screened 24 genes responsible for the poor oocyte reprogramming, and six genes (ID1, SOX2, DPPA3, ASF1A, MSL3, and KDM6B) were identified by quantitative PCR. Analyzing the expression of these genes is helpful to elucidate the mechanisms of [Ca2+]i regulating oocyte reprogramming. The most significant difference gene in this enriched item was ID1. Our results showed that the low calcium might give rise to oxidative stress and apoptosis, resulting in impaired maturation of bovine oocytes and possibly affecting subsequent reprogramming ability through the reduction of ID1.


2019 ◽  
Vol 31 (1) ◽  
pp. 213
Author(s):  
J. Keim ◽  
Y. Liu ◽  
I. Polejaeva

In vitro maturation (IVM) is an important process in the in vitro production of embryos. It has been recently shown that 3 cytokines: fibroblast growth factor 2 (FGF2), leukemia inhibitory factor (LIF), and insulin-like growth factor 1 (IGF1) have increased the efficiency of IVM, blastocyst production, and in vivo development in pig (Yuan et al. 2017 Proc. Natl. Acad. Sci. USA 114, E5796-E5804). In vitro maturation in medium supplemented with cytokines doubled the blastocyst rate and quadrupled the litter size when transferred. It was observed that the addition of cytokines to IVM medium had an effect on the regulation of pMAPK1/3, cumulus cell expansion, and transzonal projections in cumulus-oocyte complexes (COC). This study was designed to assess the effect of these 3 cytokines on IVM in bovine oocytes and their consecutive development to blastocyst. Intracellular glutathione level (GSH), frequently used as an indicator of metaphase II (MII) oocyte quality, was also evaluated. The COC were retrieved from abattoir-derived ovaries and matured for 21h in either our standard maturation medium [TCM-199 (Gibco/Life Technologies, Grand Island, NY, USA), containing 10% fetal bovine serum, 0.5µg mL−1 FSH, 5µg mL−1 LH, and 100U mL−1 penicillin/streptomycin] or maturation medium supplemented with 20ng mL−1 human LIF, 20ng mL−1 human IGF1, and 40ng mL−1 human FGF2. After IVM, COC were placed in fertilization medium and incubated with frozen-thawed sperm for 20h. Cumulus cells were removed from fertilized COC and cultured in SOF culture medium at 38.5°C in 5% CO2/humidified air. Cleavage and blastocyst rates were assessed at 48h and Day 8 post-IVF, respectively. To assess GSH level, MII oocytes were incubated in 20 µM CellTracker Blue CMF2HC (Thermo Fisher Scientific, Waltham, MA, USA) and observed under blue fluorescent light. All statistical analysis was performed using one-way ANOVA and data are presented as mean±s.e.m. The MII rate, assessed by the presence of the first polar body, was significantly higher in the maturation medium supplemented with cytokines compared with the control medium (167/202; 82.4±2.02% v. 136/198; 68.8±1.1%; P&lt;0.05, 4 replicates). For IVF, no statistical difference was found in the cleavage rate between oocytes matured in the medium supplemented with cytokines compared with control medium (351/473; 74.3±4.86% v. 358/573; 63.9±4.03%; P&gt;0.05, 5 replicates), respectively. However, a significant increase in blastocyst rate was observed in the cytokine-containing medium (64/351; 17.7±2.06%) compared with the control group (42/358; 11.0±1.96%; P&lt;0.05, 5 replicates). Furthermore, our preliminary data indicate an increase in GSH in MII oocytes matured in the cytokine-containing medium. In conclusion, the addition of FGF2, LIF, and IGF1 to maturation media improves bovine IVM efficiency and quality of the MII oocytes, leading to a greater blastocyst development rate. Supported by RFBR (18-29-07089) and UAES (1343).


2017 ◽  
Vol 4 (S) ◽  
pp. 148
Author(s):  
Nguyen Ba Tu ◽  
Bui Hong Thuy ◽  
Nguyen Van Thuan

In mammals, Biotin serves a coenzyme in the metabolism of glucose, amino acids, and fatty acids. Biotin deficiency causes decreased rates of cell proliferation, disfunction in germ cells and fetal development. This study was carried out to determine the influence of Biotin supplementation to invitro maturation medium on the development of porcine oocyte and embryos. Biotin (0.0, 1.0, 10.0, 100.0 mg/l, respectively) was added into the oocyte maturation medium, the quality of mature oocytes was evaluated after 42h culturing. The parthenogenetic diploid embryos were produced by using electro-activation system, the quality of embryos was noted at 1-4 cells stage. The results showed that, Biotin can enhance the formation of the first polar body at the concentration of 10 mg/l, it can also improve the activation efficiency of parthenogenetic diploid embryos at the preimplantation stage from 2-4 cells. Therefore, the supplementation of 10mg/l Biotin to the in-vitro maturation medium has a beneficial effect on the parthenogenetic diploid embryos development in the pig.


Author(s):  
Ileana Miclea ◽  
Marius Zahan

Abstract: The poor in vitro development of pig oocytes and embryos has been blamed on oxidative stress. We sought to find out if combinations of Trolox (T), a synthetic and cell-permeable derivative of vitamin E, and ascorbic acid (AA) could improve the maturation rates of in vitro cultured pig oocytes. Pig oocytes underwent maturation for 44–45 h in medium M 199 supplemented with 0 μM T + 0 μM AA, 100 μM T + 250 μM AA, 300 μM T + 250 μM AA, 100 μM T + 750 μM AA or 300 μM T + 750 μM AA. These combinations were chosen based on previous research conducted in our laboratory and on the available literature. After maturation, several parameters were assessed: cumulus oophorus expansion, oocyte viability (based on the presence of metabolic activity versus membrane damage), extrusion of the first polar body, mitochondrial membrane potential (MMP), pronucleus formation, and embryo development after fertilization. All antioxidant combinations significantly improved cumulus expansion and formation of the first polar body. The best was 300 μM T + 250 μM AA for the first characteristic and 300 μM T + 750 μM AA for the second. Antioxidant presence in the maturation media increased the percentages of viable oocytes but not significantly. MMP was not significantly modified by the addition of antioxidant combinations. We also found that a low concentration of T (100 µM) mixed with a high concentration of AA (750 µM) in the oocyte maturation media led to significantly higher rates of both female and male pronuclei formation and also enhanced embryo development to the morula stage. Therefore, we recommend this combination to improve the in vitro maturation media of pig oocytes.  


Zygote ◽  
2004 ◽  
Vol 12 (4) ◽  
pp. 333-338 ◽  
Author(s):  
Hiroshi Iwayama ◽  
Shinichi Hochi ◽  
Megumi Kato ◽  
Masumi Hirabayashi ◽  
Masashige Kuwayama ◽  
...  

Germinal-vesicle-stage oocytes enclosed with compact cumulus cell layers (COCs) were recovered from adult or prepubertal minke whale ovaries, and were vitrified in a solution containing 15% ethylene glycol, 15% DMSO and 0.5 M sucrose using either a Cryotop or an open-pulled straw (OPS) as the cryodevice. The post-warm COCs with normal morphology were cultured for 40 h in a 390 mosmol in vitro maturation medium, and oocytes extruding the first polar body were considered to be matured. The proportion of morphologically normal COCs after vitrification and warming was higher when the COCs were cryopreserved by Cryotop (adult origin, 88.4%; prepubertal origin, 80.8%) compared with the OPS (adult origin, 67.7%; prepubertal origin, 64.2%). The oocyte maturation rate was higher in the adult/Cryotop group (29.1%) compared with those of the prepubertal/Cryotop group (14.4%), the adult/OPS group (14.3%) and the prepubertal/OPS group (10.6%). These results indicate that the Cryotop is a better device than the OPS for vitrification of immature oocytes from adult minke whales.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Karrar Al-Malikey ◽  
Dhia Al-Delemi

This study aimed to know the effect of vitamin C on in vitro oocytes maturation of Iraqi she-camel with different techniques collection. Several oocytes collection technique have been used: Three hundred ninety oocytes were collected from 84 ovaries from Afak slaughterhouse within half to one hour of slaughter animal and transport by cool box contain normal saline 0.9% (20-25C°) to laboratory of Al-Diwaniyah veterinary Hospital within 1-2 hours. After washing the ovaries with normal saline, each 28 ovaries: oocytes collected by one of the following techniques: Aspiration, slicing, and dissection. Oocytes collected from the three techniques counted and graded. Only grades A and B were selected, and undergo in maturation process. and matured in maturation medium (M199-A) and incubated in CO2 incubator at 5% CO2, 38.5 Cº, and 90% humidity for 24h and supplement the media with 0, 25, 50, 100 µg/ml of vit.C for each technique. Aspirated oocytes were cultured the results was expended cumulus cells was 66.66% (66/99) and the appearance first polar body (F.P.B.) was 68.1% (45/66). Maturation medium supplement with 50µg/ml of vit. C higher rate (84% & 81.8 expended cumulus and F.P.B.) than other groups with significant (P<5%). Maturation oocytes by slicing technique were cultured, expended cumulus was 61.4% (59/96) and the appearance F.P.B. 62.7% (37/59). Maturation medium supplement with 50µg/ml of vit. C (79.16 & 73.68% expended cumulus and F.P.B.) higher rate than other groups with significant (P<5%). Maturation oocytes by dissection technique were cultured. expended cumulus was 57.2% (59/103) and the appearance F.P.B. 55.93% (33/59). Maturation medium supplement with 50µg/ml of vit. C higher rate than other groups with significant (P<5%).


2018 ◽  
Vol 30 (12) ◽  
pp. 1739 ◽  
Author(s):  
L. T. M. Vandenberghe ◽  
B. Heindryckx ◽  
K. Smits ◽  
K. Szymanska ◽  
N. Ortiz-Escribano ◽  
...  

Platelet-activating factor (PAF) is a well-described autocrine growth factor involved in several reproductive processes and is tightly regulated by its hydrolysing enzyme, PAF acetylhydrolase 1B (PAFAH1B). This intracellular enzyme consists of three subunits: one regulatory, 1B1, and two catalytic, 1B2 and 1B3. PAFAH1B3 has remained uncharacterised until now. Here, we report that PAFAH1B3 is present during the different stages of the first meiotic division in bovine, murine and human oocytes. In these species, the PAFAH1B3 subunit was clearly present in the germinal vesicle, while at metaphase I and II, it localised primarily at the meiotic spindle structure. In cattle, manipulation of the microtubules of the spindle by nocodazole, taxol or cryopreservation revealed a close association with PAFAH1B3. On the other hand, disruption of the enzyme activity either by P11, a selective inhibitor of PAFAH1B3, or by PAFAH1B3 antibody microinjection, caused arrest at the MI stage with defective spindle morphology and consequent failure of first polar body extrusion. In conclusion, our results show that one of the catalytic subunits of PAFAH1B, namely PAFAH1B3, is present in bovine, murine and human oocytes and that it plays a functional role in spindle formation and meiotic progression during bovine oocyte maturation.


2014 ◽  
Vol 26 (8) ◽  
pp. 1084 ◽  
Author(s):  
Yu-Ting Shen ◽  
Yue-Qiang Song ◽  
Xiao-Qin He ◽  
Fei Zhang ◽  
Xin Huang ◽  
...  

Meiosis produces haploid gametes for sexual reproduction. Triphenyltin chloride (TPTCL) is a highly bioaccumulated and toxic environmental oestrogen; however, its effect on oocyte meiosis remains unknown. We examined the effect of TPTCL on mouse oocyte meiotic maturation in vitro and in vivo. In vitro, TPTCL inhibited germinal vesicle breakdown (GVBD) and first polar body extrusion (PBE) in a dose-dependent manner. The spindle microtubules completely disassembled and the chromosomes condensed after oocytes were exposed to 5 or 10 μg mL–1 TPTCL. γ-Tubulin protein was abnormally localised near chromosomes rather than on the spindle poles. In vivo, mice received TPTCL by oral gavage for 10 days. The general condition of the mice deteriorated and the ovary coefficient was reduced (P < 0.05). The number of secondary and mature ovarian follicles was significantly reduced by 10 mg kg–1 TPTCL (P < 0.05). GVBD decreased in a non-significant, dose-dependent manner (P > 0.05). PBE was inhibited with 10 mg kg–1 TPTCL (P < 0.05). The spindles of in vitro and in vivo metaphase II oocytes were disassembled with 10 mg kg–1 TPTCL. These results suggest that TPTCL seriously affects meiotic maturation by disturbing cell-cycle progression, disturbing the microtubule cytoskeleton and inhibiting follicle development in mouse oocytes.


Sign in / Sign up

Export Citation Format

Share Document