Immunohistochemical localisation of growth hormone (GH), GH receptor (GHR), insulin-like growth factor I (IGF-I) and type I IGF-I receptor, and gene expression of GH and GHR in rat pre-antral follicles

Zygote ◽  
2002 ◽  
Vol 10 (1) ◽  
pp. 85-94 ◽  
Author(s):  
J. Zhao ◽  
M.A.M. Taverne ◽  
G.C. van der Weijden ◽  
M.M. Bevers ◽  
R. van den Hurk

We previously demonstrated that the development of cultured rat pre-antral follicles is stimulated by growth hormone (GH) and insulin-like growth factor-I (IGF-I) and that the mRNA of IGF-I and type I IGF receptor (IGFR) is present in the oocyte and wall of these follicles. To gain a closer insight into the regulation of early folliculogenesis by GH and IGF-I, the present study investigated the gene expression of GH and GHR mRNA in isolated oocytes and follicular wall cells of pre-antral follicles, using reverse transcriptase polymerase chain reaction, and the localisation of immunoreactive IGF-I, IGFR, GH and GHR proteins in ovarian sections of 10-day-old rats. GH was detected in oocytes and follicular wall tissue of pre-antral follicles, whereas expression of the GH mRNA was absent. The GHR mRNA was present in follicular wall tissue and not in the oocyte, while positive immunostaining for GHR was observed in all cells of the pre-antral follicles. Immunoreactive IGF-I and IGFR was also visible in the pre-antral follicles, especially in the oocytes. In conclusion, the data show that the previously demonstrated local gene expression of IGF-I and IGFR in oocytes and their enveloping follicular cells also leads to translation, which points to the involvement of intrafollicular IGF-I in early follicular development. The presence of the GHR mRNA and the GHR and GH proteins in pre-antral follicles in the absence of ovarian GH mRNA suggest a direct effect of systemic GH on early follicular development.

1998 ◽  
Vol 83 (1) ◽  
pp. 81-87 ◽  
Author(s):  
Tarcisio Bianda ◽  
Yvonne Glatz ◽  
Roger Bouillon ◽  
Ernst Rudolf Froesch ◽  
Christoph Schmid

Administration of insulin-like growth factor-I (IGF-I) or growth hormone (GH) is known to stimulate bone turnover and kidney function. To investigate the effects of IGF-I and GH on markers of bone turnover, eight adult GH-deficient patients (48 ± 14 yr of age) were treated with IGF-I (5 μg/kg/h in a continuous sc infusion) and GH (0.03 IU/kg/daily sc injection at 2000 h) in a randomized cross-over study. We monitored baseline values for three consecutive days before initiating the five-day treatment period, as well as the wash-out period of ten weeks. Serum osteocalcin, carboxyterminal and aminoterminal propeptide of type I procollagen (PICP and PINP, respectively) increased significantly within 2–3 days of both treatments (P < 0.02) and returned to baseline levels within one week after the treatment end. The changes in resorption markers were less marked as compared with formation markers. Total 1,25-dihydroxycholecalciferol (1,25-(OH)2D3) rose significantly, whereas PTH and calcium levels remained unchanged during either treatment. Conclusions: Because the rapid increase in markers of bone formation was not preceded by an increase in resorption markers, IGF-I is likely to stimulate bone formation by a direct effect on osteoblasts. Moreover, because PTH, calcium, and phosphate remained unchanged, IGF-I appears to stimulate renal 1α-hydroxylase activity in vivo.


2000 ◽  
Vol 47 (SupplMarch) ◽  
pp. S37-S40 ◽  
Author(s):  
HIDEO YOSHIZATO ◽  
MINORU TANAKA ◽  
TAKAHIKO FUJIKAWA ◽  
YOSHIFUMI HIGASHIMOTO ◽  
AYAKO SHIMIZU ◽  
...  

1997 ◽  
Vol 82 (4) ◽  
pp. 1064-1070 ◽  
Author(s):  
Michael I. Lewis ◽  
Thomas J. Lorusso ◽  
Mario Fournier

Lewis, Michael I., Thomas J. LoRusso, and Mario Fournier.Effect of insulin-like growth factor I and/or growth hormone on diaphragm of malnourished adolescent rats. J. Appl. Physiol. 82(4): 1064–1070, 1997.—Young growing animals appear to have significantly reduced “nutritional reserve” to short periods of unstressed starvation compared with adults, with resultant growth arrest and/or atrophy of diaphragm (Dia) muscle fibers. The aim of this study was to assess in an adolescent rat model of acute nutritional deprivation (ND; 72 h) the impact of insulin-like growth factor I (IGF-I), with or without added growth hormone (GH), on the cross-sectional areas (CSA) of individual Dia muscle fibers. Five groups were studied: 1) control (Ctr); 2) ND; 3) ND given IGF-I (ND/IGF-I); 4) ND given GH (ND/GH); and 5) ND given a combination of IGF-I and GH (ND/IGF-I/GH). IGF-I was given by a subcutaneously implanted osmotic minipump (200 μg/day), whereas GH was administered twice daily by a subcutaneous injection (250 μg every 12 h). Isometric contractile and fatigue properties of the Dia were determined in vitro. Forces were normalized for muscle CSA (i.e., specific force). Dia fiber type proportions were determined histochemically, and fiber CSA was quantified by using a computer-based image-processing system. Total serum IGF-I concentrations were significantly reduced in ND and ND/GH animals, compared with Ctr, and elevated in the groups receiving IGF-I. The provision of growth factors did not alter the contractile or fatigue properties of ND animals. Dia fiber type proportions were similar among the groups. In ND animals, there was a significant reduction in the CSA of types I, IIa, IIx, and IIc Dia fibers compared with Ctr. The administration of IGF-I alone or in combination with GH to ND animals significantly diminished the reduction in Dia fiber size. GH alone had no effect on Dia fiber size in ND animals. We conclude that with acute ND the peripheral resistance to the action of GH appears to be bypassed by the administration of IGF-I alone or in combination with GH.


1994 ◽  
Vol 267 (2) ◽  
pp. E331-E336 ◽  
Author(s):  
D. A. Fryburg

The effect of a 6-h intra-arterial infusion of recombinant human (rh) insulin-like growth factor I (IGF-I) on forearm muscle metabolism was studied in 19 postabsorptive subjects. Forearm glucose, lactate, and phenylalanine (Phe) balances, as well as estimates of protein degradation (Phe Ra) and synthesis (Phe Rd) were measured before and at 3 and 6 h into an infusion of rhIGF-I at a dose of 1.8 (n = 6), 6.0 (n = 8), or 10.0 (n = 5) micrograms.kg-1.h-1. In response to intra-arterial IGF-I, deep venous IGF-I rose by 55, 141, and 315%, respectively (all P < 0.01), and forearm blood flow accelerated by 75 (1.8 microgram), 213 (6.0 micrograms), and 159% (10.0 micrograms; all P < 0.02). No change in forearm glucose uptake was observed at the lowest dose, whereas four- to sixfold increases were observed at both the 6 and 10 micrograms.kg-1.h-1 doses (both P < 0.02). Forearm Phe balance shifted positively at all three doses by 27 +/- 6, 48 +/- 7, and 51 +/- 9 nmol.min-1 x 100 ml-1, respectively (all P < 0.01). At all three doses, Phe Rd increased comparably by 49-74% (all P < 0.05). At the 6.0 and 10.0 but not the 1.8 microgram.kg-1.h-1 dose, Phe Ra decreased by approximately 45% (P < 0.02). Forearm muscle metabolism was also studied in the contralateral non-IGF-infused arm at these three doses. Despite increases in deep venous IGF-I up to 517 ng/ml due to recirculating IGF-I (10.0 micrograms.kg-1.h-1 dose), contralateral forearm muscle glucose, lactate, or Phe handling did not change. In conclusion, intra-arterial IGF-I exhibits growth hormone-like effects at all doses tested, whereas the insulin-like effects are observed at higher doses; these effects appear dependent on the route of administration.


Sign in / Sign up

Export Citation Format

Share Document