Expression of IGF2 and IGF receptor mRNA in bovine nuclear transferred embryos

Zygote ◽  
2003 ◽  
Vol 11 (3) ◽  
pp. 245-252 ◽  
Author(s):  
Dong-Wook Han ◽  
Sang-Jin Song ◽  
Sang Jun Uhum ◽  
Jeong-Tae Do ◽  
Nam-Hyung Kim ◽  
...  

Incomplete reprogramming of the donor cell nucleus after nuclear transfer (NT) probably leads to the abnormal expression of developmentally important genes. This may be responsible for the low efficiency of cloned animal production. Insulin-like growth factor 2 (IGF2) and IGF2 receptor (IGF2R) are imprinted genes that play important roles in preimplantation development. To obtain an insight into abnormal gene expression after nuclear transfer, we assessed the transcription patterns of IGF2-IGF2R in single in vitro fertilised and cloned embryos by reverse-transcription polymerase chain reaction (RT-PCR). IGF2R expression did not differ significantly but IGF2 was more highly expressed in cloned embryos than in IVF embryos (p < 0.05). This was confirmed by a quantitative RT-PCR method. Thus, incomplete reprogramming may induce abnormal transcription of IGF2 in cloned embryos.

2019 ◽  
Vol 7 (9) ◽  
pp. 1422-1424
Author(s):  
Aminah Dalimunthe ◽  
Poppy Anjelisa Zaitun Hasibuan ◽  
Denny Satria

AIM: To investigated the activities of chloroform fractions at pH 7 of Litsea cubeba Lour. Fruits and heartwoods (CF-7F and CF-7H) in decrease expression of PI3KCA, Akt-1 and Akt-2 genes towards cervical cancer cell culture (HeLa) experiments in vitro. MATERIAL AND METHODS: CF-7F and CF-7H (12.5 and 25 µg/mL) were tested for its potential inhibition on gene expression of PI3KCA, Akt-1 and Akt-2 genes by Reverse Transcription-Polymerase Chain Reaction (RT-PCR) method. RESULT: CF-7F and CF-7H were showed the activity to reduce the expression of PI3KCA, Akt-1 and Akt-2 genes. CONCLUSION: Our results suggest that CF-7F and CF-7H significantly inhibit the expression of PI3KCA, Akt-1 and Akt-2 genes.


Blood ◽  
1997 ◽  
Vol 90 (2) ◽  
pp. 865-872 ◽  
Author(s):  
Ellen L.W. Kittler ◽  
Stefan O. Peters ◽  
Rowena B. Crittenden ◽  
Michelle E. Debatis ◽  
Hayley S. Ramshaw ◽  
...  

Using a murine bone marrow transplantation model, we evaluated the long-term engraftment of retrovirally transduced bone marrow cells in nonmyeloablated hosts. Male bone marrow was stimulated in a cocktail of interleukin-3 (IL-3), IL-6, IL-11, and stem cell factor (SCF ) for 48 hours, then cocultured on the retroviral producer line MDR18.1 for an additional 24 hours. Functional transduction of hematopoietic progenitors was detected in vitro by reverse transcriptase-polymerase chain reaction (RT-PCR) amplification of multiple drug resistance 1 (MDR1) mRNA from high proliferative potential-colony forming cell (HPP-CFC) colonies. After retroviral transduction, male bone marrow cells were injected into nonablated female mice. Transplant recipients received three TAXOL (Bristol-Myers, Princeton, NJ) injections (10 mg/kg) over a 14-month period. Transplant recipient tissues were analyzed by Southern blot and fluorescence in situ hybridization for Y-chromosome–specific sequences and showed donor cell engraftment of approximately 9%. However, polymerase chain reaction amplification of DNAs from bone marrow, spleen, and peripheral blood showed no evidence of the transduced MDR1 gene. RT-PCR analysis of total bone marrow RNA showed that transcripts from the MDR1 gene were present in a fraction of the engrafted donor cells. These data show functional transfer of the MDR1 gene into nonmyeloablated murine hosts. However, the high rates of in vitro transduction into HPP-CFC, coupled with the low in vivo engraftment rate of donor cells containing the MDR1 gene, suggest that the majority of stem cells that incorporated the retroviral construct did not stably engraft in the host. Based on additional studies that indicate that ex vivo culture of bone marrow induces an engraftment defect concomitantly with progression of cells through S phase, we propose that the cell cycle transit required for proviral integration reduces or impairs the ability of transduced cells to stably engraft.


2020 ◽  
Vol 148 ◽  
Author(s):  
K. O. Elimian ◽  
C. L. Ochu ◽  
E. Ilori ◽  
J. Oladejo ◽  
E. Igumbor ◽  
...  

Abstract The objective of this study was to describe the epidemiology of COVID-19 in Nigeria with a view of generating evidence to enhance planning and response strategies. A national surveillance dataset between 27 February and 6 June 2020 was retrospectively analysed, with confirmatory testing for COVID-19 done by real-time polymerase chain reaction (RT-PCR). The primary outcomes were cumulative incidence (CI) and case fatality (CF). A total of 40 926 persons (67% of total 60 839) had complete records of RT-PCR test across 35 states and the Federal Capital Territory, 12 289 (30.0%) of whom were confirmed COVID-19 cases. Of those confirmed cases, 3467 (28.2%) had complete records of clinical outcome (alive or dead), 342 (9.9%) of which died. The overall CI and CF were 5.6 per 100 000 population and 2.8%, respectively. The highest proportion of COVID-19 cases and deaths were recorded in persons aged 31–40 years (25.5%) and 61–70 years (26.6%), respectively; and males accounted for a higher proportion of confirmed cases (65.8%) and deaths (79.0%). Sixty-six per cent of confirmed COVID-19 cases were asymptomatic at diagnosis. In conclusion, this paper has provided an insight into the early epidemiology of COVID-19 in Nigeria, which could be useful for contextualising public health planning.


Blood ◽  
1997 ◽  
Vol 90 (2) ◽  
pp. 865-872 ◽  
Author(s):  
Ellen L.W. Kittler ◽  
Stefan O. Peters ◽  
Rowena B. Crittenden ◽  
Michelle E. Debatis ◽  
Hayley S. Ramshaw ◽  
...  

Abstract Using a murine bone marrow transplantation model, we evaluated the long-term engraftment of retrovirally transduced bone marrow cells in nonmyeloablated hosts. Male bone marrow was stimulated in a cocktail of interleukin-3 (IL-3), IL-6, IL-11, and stem cell factor (SCF ) for 48 hours, then cocultured on the retroviral producer line MDR18.1 for an additional 24 hours. Functional transduction of hematopoietic progenitors was detected in vitro by reverse transcriptase-polymerase chain reaction (RT-PCR) amplification of multiple drug resistance 1 (MDR1) mRNA from high proliferative potential-colony forming cell (HPP-CFC) colonies. After retroviral transduction, male bone marrow cells were injected into nonablated female mice. Transplant recipients received three TAXOL (Bristol-Myers, Princeton, NJ) injections (10 mg/kg) over a 14-month period. Transplant recipient tissues were analyzed by Southern blot and fluorescence in situ hybridization for Y-chromosome–specific sequences and showed donor cell engraftment of approximately 9%. However, polymerase chain reaction amplification of DNAs from bone marrow, spleen, and peripheral blood showed no evidence of the transduced MDR1 gene. RT-PCR analysis of total bone marrow RNA showed that transcripts from the MDR1 gene were present in a fraction of the engrafted donor cells. These data show functional transfer of the MDR1 gene into nonmyeloablated murine hosts. However, the high rates of in vitro transduction into HPP-CFC, coupled with the low in vivo engraftment rate of donor cells containing the MDR1 gene, suggest that the majority of stem cells that incorporated the retroviral construct did not stably engraft in the host. Based on additional studies that indicate that ex vivo culture of bone marrow induces an engraftment defect concomitantly with progression of cells through S phase, we propose that the cell cycle transit required for proviral integration reduces or impairs the ability of transduced cells to stably engraft.


2016 ◽  
Vol 4 (1) ◽  
Author(s):  
David C. Tooy ◽  
Janno B. Bernadus ◽  
Angle Sorisi

Abstract: Malaria is one of the most important parasitic disease which is caused by Plasmodium spp. There are approximately 1,2 billion people in the world with high risk of getting malaria. Plasmodium falciparum (P. falciparum) is the cause of tropical malaria or falciparum malaria, and is responsible for most of the mortality rate. Currently, real-time polymerase chain reaction (RT-PCR) is being studied as an alterative of conventional malarian examination. Mangold et al reported that RT-PCR have 94.1% sensitivity and 100% specificity compared to microscopic examination in detecting P. falciparum. The aim of this research is to detect the presence of P. falciparum using RT-PCR in Likupang and Bitung region. This research were using descriptive design to find out the capability of real-time PCR method to detect P. falciparum in Likupang dan Bitung region. The researcher have examined 71 samples which are fulfill the research sample’s criteria. Postive results of P. falciparum found in 18 samples (25,3%) and negative results in 53 samples (74,6%) of total 71 samples with using RT-PCR. No positive results were found in samples from Likupang. There are positive result of P. falciparum in samples from Bitung. It is concluded that RT-PCR method can detect the presence of P. falciparum from the samples obtained from Likupang and Bitung based on the presence of its DNA. This detection efford is done by using 18S rRNA as target gene and ajust specific temperature on the RT-PCR instrument.Keywords: Plasmodium falciparum, Real-time Polymerase Chain Reaction (PCR), DetectionAbstrak: Malaria merupakan salah satu penyakit penting yang disebabkan oleh parasit Plasmodium spp. Kira-kira 1,2 miliar penduduk dunia memiliki risiko tinggi untuk mendapat malaria. Di Indonesia sendiri, terdapat 343.527 kasus terkonfirmasi dan 45 kematian karena malaria. Plasmodium falciparum (P. Falciparum) merupakan penyebab dari malaria tropika atau malaria falsiparum, dan bertanggung jawab atas sebagian besar angka mortalitas. Saat ini Real-Time Polymerase Chain Reaction (RT-PCR) telah banyak diteliti sebagai alternatif dari pemeriksaan malaria. Mangold dkk melaporkan bahwa real-time PCR memiliki nilai sensitivitas 94,1% dan nilai spesifisitas 100% terhadap pemeriksaan mikroskopis dalam mendeteksi P. falciparum. Penelitian bertujuan untuk mendeteksi P. falciparum dengan menggunakan RT-PCR di daerah Likupang dan Bitung. Penelitian ini menggunakan rancangan penelitian deskriptif untuk mengetahui kemampuan metode real-time PCR dalam mendeteksi P. falciparum di daerah Likupang dan Bitung. Tujuan penelitian ini ialah untuk mendeteksi keberadaan P. falciparum dengan menggunakan metode real-time PCR di daerah Likupang dan Bitung. Peneliti memeriksa 71 sampel darah yang memenuhi kriteria sampel penelitian. Hasil positif P. falciparum ditemukan pada 18 sampel (25,3 %) dan hasil negatif pada 53 sampel (74,6 %) dari total 71 sampel dengan menggunakan RT-PCR. Tidak ditemukannya hasil positif P. falciparum pada sampel dari Likupang. Ditemukan hasil positif P. falciparum pada sampel dari Bitung. Simpulan: Metode RT-PCR dapat mendeteksi P. falciparum berdasarkan keberadaan DNA-nya pada sampel yang diperoleh dari daerah Likupang dan Bitung. Deteksi ini berhasil dilakukan dengan menggunakan 18S rRNA sebagai gen target dan pengaturan suhu tertentu pada instrument RT-PCR.Kata kunci: P. falciparum, Real-time Polymerase Chain Reaction (PCR), Detection


Zygote ◽  
2017 ◽  
Vol 25 (3) ◽  
pp. 304-312
Author(s):  
Victoria Jiménez-Moreno ◽  
Ekaitz Agirregoitia

SummaryThe tubulin cofactors TBCD and TBCE play an essential role in regulation of the microtubule dynamics in a wide variety of somatic cells, but little information is known about the expression of these cofactors in human sperm and oocytes. In this study, we focused on the investigation of the presence of, and the differential distribution of, the tubulin cofactors TBCD and TBCE in human sperm and during human oocyte maturation. We performed expression assays for TBCD and TBCE by reverse transcription-polymerase chain reaction (RT-PCR), western blot and immunofluorescence and verified the presence of both cofactors in human gametes. TBCD and TBCE were located mainly in the middle region and in the tail of the sperm while in the oocyte the localization was cytosolic. The mRNA of both tubulin cofactors were present in the human oocytes but not in sperm cells. This finding gives a first insight into where TBCD and TBCE could carry out their function in the continuous changes that the cytoskeleton experiences during gametogenesis and also prior to fertilization.


Sign in / Sign up

Export Citation Format

Share Document