Development and spindle formation in rat somatic cell nuclear transfer (SCNT) embryos in vitro using porcine recipient oocytes

Zygote ◽  
2009 ◽  
Vol 17 (3) ◽  
pp. 195-202 ◽  
Author(s):  
Atsushi Sugawara ◽  
Satoshi Sugimura ◽  
Yumi Hoshino ◽  
Eimei Sato

SummaryCloning that uses somatic cell nuclear transfer (SCNT) technology with gene targeting could be a potential alternative approach to obtain valuable rat models. In the present study, we determined the developmental competence of rat SCNT embryos constructed using murine and porcine oocytes at metaphase II (MII). Further, we assessed the effects of certain factors, such as: (i) the donor cell type (fetal fibroblasts or cumulus cells); and (ii) premature chromosome condensation (PCC) with normal spindle formation, on the developmental competence of rat interspecies SCNT (iSCNT) embryos. iSCNT embryos that had been constructed using porcine oocytes developed to the blastocyst stage, while those embryos made using murine MII oocytes did not. Rat iSCNT embryos constructed with green fluorescent protein (GFP)-expressing fetal fibroblasts injected into porcine oocytes showed considerable PCC with a normal bipolar spindle formation. The total cell number of iSCNT blastocyst derived from GFP-expressing fetal fibroblasts was higher than the number derived from cumulus cells. In addition, these embryos expressed GFP at the blastocyst stage. This paper is the first report to show that rat SCNT embryos constructed using porcine MII oocytes have the potential to develop to the blastocyst stage in vitro. Thus the iSCNT technique, when performed using porcine MII oocytes, could provide a new bioassay system for the evaluatation of the developmental competence of rat somatic cells.

2018 ◽  
Vol 24 (1) ◽  
pp. 29-37 ◽  
Author(s):  
Shuang Liang ◽  
Zheng-Wen Nie ◽  
Jing Guo ◽  
Ying-Jie Niu ◽  
Kyung-Tae Shin ◽  
...  

AbstractMicroRNA (miR)-29b plays a crucial role during somatic cell reprogramming. The aim of the current study was to explore the effects of miR-29b on the developmental competence of bovine somatic cell nuclear transfer (SCNT) embryos, as well as the underlying mechanisms of action. The expression level of miR-29b was lower in bovine SCNT embryos at the pronuclear, 8-cell, and blastocyst stages compared within vitrofertilized embryos. In addition, miR-29b regulates the expression of DNA methyltransferases (Dnmt3a/3bandDnmt1) in bovine SCNT embryos. We further investigated SCNT embryo developmental competence and found that miR-29b overexpression during bovine SCNT embryonic development does not improve developmental potency and downregulation inhibits developmental potency. Nevertheless, the quality of bovine SCNT embryos at the blastocyst stage improved significantly. The expression of pluripotency factors and cellular proliferation were significantly higher in blastocysts from the miR-29b overexpression group than the control and downregulation groups. In addition, outgrowth potential in blastocysts after miR-29b overexpression was also significantly greater in the miR-29b overexpression group than in the control and downregulation groups. Taken together, these results demonstrated that miR-29b plays an important role in bovine SCNT embryo development.


Zygote ◽  
2014 ◽  
Vol 23 (4) ◽  
pp. 494-500 ◽  
Author(s):  
Hironobu Sugimoto ◽  
Yuta Kida ◽  
Noriyoshi Oh ◽  
Kensaku Kitada ◽  
Kazuya Matsumoto ◽  
...  

SummaryWe examined growing oocytes collected from follicles remaining in superovulated rabbit ovaries, that were grown (in vitro growth, IVG) and matured (in vitro maturation, IVM) in vitro. We produced somatic cell nuclear transfer (SCNT) embryos using the mature oocytes and examined whether these embryos have the ability to develop to the blastocyst stage. In addition, we examined the effects of trichostatin A (TSA), a histone deacetylase inhibitor (HDACi), on the developmental competence of SCNT embryos derived from IVG–IVM oocytes. After growth for 7 days and maturation for 14–16 h in vitro, the growing oocytes reached the metaphase II stage (51.4%). After SCNT, these reconstructed embryos reached the blastocyst stage (20%). Furthermore, the rate of development to the blastocyst stage and the number of cells in the blastocysts in SCNT embryos derived from IVG–IVM oocytes were significantly higher for TSA-treated embryos compared with TSA-untreated embryos (40.6 versus 21.4% and 353.1 ± 59.1 versus 202.5 ± 54.6, P < 0.05). These results indicate that rabbit SCNT embryos using IVG–IVM oocytes have the developmental competence to reach the blastocyst stage.


2007 ◽  
Vol 19 (1) ◽  
pp. 163
Author(s):  
N. T. Uoc ◽  
F. de Rennis ◽  
N. H. Duc ◽  
L. C. Bui ◽  
N. V. Hanh ◽  
...  

Reproductive activity in swamp buffalo is characterized by a clearly demonstrated anestrus season. The aim of the present study was to evaluate season effect on the oocyte collection, in vitro maturation, and somatic cell nuclear transfer. The ovaries collected from a slaughterhouse were divided into 3 groups according to the collection period: (1) G1: from January to April; G2: from May to August, which is characterized by higher climate temperature and low reproductive activity; and G3: from September to December. Cumulus–oocyte complexes (COCs) were aspirated from follicles 2-6 mm in diameter using an 18-gauge needle, washed in HEPES-buffered TCM-199 (Sigma-Aldrich, St Louis, MO, USA), and classified following 3 different quality levels: A (with 4–6 layers of cumulus cells), B (with 2–3 layers of cumulus cells), and C (few or without cumulus cells). The oocytes of A and B categories were used for IVM in maturation media currently used in cattle (TCM-199 medium + 10% fetal bovine serum) with an increase of FSH concentration (30 �g mL-1) and estradiol-17β (3 �g mL-1). Maturation was carried out at 39�C in a water-saturated incubator, under 5% CO2 for 22 h. The oocytes were observed for the cumulus expanding and the presence of polar body (PB). The oocytes with PB were used for further enucleation and cell nuclear transfer using buffalo quiescent fibroblast cells and the technique described previously (Nguyen et al. 2000 Theriogenology 53, 235). The percentages of intact and fused oocytes as well as reconstructed embryos developed to blastocyst stage were compared for the oocytes from G1 and G2. The results indicated that the average number of good quality COCs collected per ovary for the G1, G2, and G3 period were 6.00 � 4.08 (n = 426), 2.93 � 2.55 (n = 346), and 4.78 � 1.05 (n = 445), respectively. The percentages of A and B oocytes were 62.4% (1.58 � 0.51 vs. 2.17 � 1.54), 63.2% (0.90 � 0.32 vs. 0.95 � 0.50), and 54.7% (1.12 � 0.25 vs. 1.49 � 0.53), respectively; the maturation rate was 55.08%, 56.28%, and 52.16%, respectively. There were no significant differences between G1 and G2 in the percentage of intact and fused oocytes (93.7% and 59% for G1; 100% and 60% for G2, respectively), but the rate of embryos developed to blastocyst stage was higher for oocytes from G1 (18.5% vs. 10.2%). In conclusion, in swamp buffalo, the hot season affected significantly the number of oocytes collected per animal and the subsequent results of somatic cell nuclear transfer. The optimal period for working with buffalo oocyte is from January to April. This work was aupported by a grant from the Vietnam-Italy 3AB3 Project.


2011 ◽  
Vol 23 (1) ◽  
pp. 139
Author(s):  
J. You ◽  
N. Kim ◽  
S. Kang ◽  
E. Lee

The size of perivitelline space (PVS) is closely related with the frequency of polyspermic fertilization in pig oocytes. It has been reported that enlargement of PVS is attributed to accumulation of glycoproteins synthesised and secreted from cumulus cells and that culture of immature oocytes in low-salt medium enlarges PVS in pigs. This study examined the developmental competence of pig oocytes after parthenogenetic activation (PA) and somatic cell nuclear transfer (SCNT) in relation to the size of the PVS of oocytes matured in vitro (IVM). Cumulus–oocyte complexes were matured in medium 199 (Experiment 1) or porcine zygote medium (PZM)-3 (Experiment 2) supplemented with pig follicular fluid, cysteine, pyruvate, EGF, insulin, and hormones for the first 22 h and then cultured in hormone-free medium for an additional 22 h. IVM oocytes were activated electrically for PA or used as recipient cytoplasts for SCNT. PA and SCNT embryos were cultured for 7 days in PZM-3 medium supplemented with bovine serum albumin. The intracellular glutathione (GSH) level in IVM oocytes was determined by analysing the fluorescence intensity of oocytes after staining with CellTracker Blue CMF2HC. The expression of CDK1, PCNA, and ERK2 mRNA in IVM oocytes was analysed by RT-PCR. Data were analysed using a general linear model procedure followed by the least significant difference mean separation procedure when the treatments differed at P < 0.05. In Experiment 1, oocytes with a larger PVS had higher (P < 0.05) levels of intracellular GSH (1.0 pixels/oocyte v. 0.6 pixels/oocyte) and blastocyst formation (54% v. 37%) after PA than oocytes with smaller PVS. In Experiment 2, maturation culture of oocytes in PZM-3 with reduced (61.6 mM) NaCl concentration significantly increased (P < 0.05) the size of the PVS (5.2 μM v. 3.3 μM) compared with control oocytes that were matured in PZM-3 containing 108 mM NaCl, although the treatment did not alter the nuclear maturation. Moreover, oocytes with increased PVS expressed more CDK1, PCNA, and ERK2 mRNA and had higher (P < 0.05) intracellular GSH levels (1.6 pixels/oocyte v. 1.2 pixels/oocyte) and increased blastocyst formation after PA (52% v. 41%) and SCNT (32% v. 18%) compared with control oocytes. Our results demonstrate that pig oocytes with a large PVS have greater developmental competence after PA and SCNT, which is attributed to improved cytoplasmic maturation resulting from the enhanced GSH level and transcription factor expression and that enlargement of PVS by the culture in low-NaCl medium also improves developmental competence of pig oocytes. This work was supported by grants (#20070301034040 and #20080401034072) from the BioGreen 21 Program (Rural Development Administration, Republic of Korea).


Zygote ◽  
2011 ◽  
Vol 20 (1) ◽  
pp. 67-72 ◽  
Author(s):  
So Gun Hong ◽  
Hyun Ju Oh ◽  
Jung Eun Park ◽  
Min Jung Kim ◽  
Geon A. Kim ◽  
...  

SummarySomatic cell nuclear transfer (SCNT) has emerged as an important tool for producing transgenic animals and deriving transgenic embryonic stem cells. The process of SCNT involves fusion of in vitro matured oocytes with somatic cells to make embryos that are transgenic when the nuclear donor somatic cells carry ‘foreign’ DNA and are clones when all the donor cells are genetically identical. However, in canines, it is difficult to obtain enough mature oocytes for successful SCNT due to the very low efficiency of in vitro oocyte maturation in this species that hinders canine transgenic cloning. One solution is to use oocytes from a different species or even a different genus, such as bovine oocytes, that can be matured easily in vitro. Accordingly, the aim of this study was: (1) to establish a canine fetal fibroblast line transfected with the green fluorescent protein (GFP) gene; and (2) to investigate in vitro embryonic development of canine cloned embryos derived from transgenic and non-transgenic cell lines using bovine in vitro matured oocytes. Canine fetal fibroblasts were transfected with constructs containing the GFP and puromycin resistance genes using FuGENE 6®. Viability levels of these cells were determined by the MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide] assay. Interspecies SCNT (iSCNT) embryos from normal or transfected cells were produced and cultured in vitro. The MTT measurement of GFP-transfected fetal fibroblasts (mean OD = 0.25) was not significantly different from non-transfected fetal fibroblasts (mean OD = 0.35). There was no difference between transgenic iSCNT versus non-transgenic iSCNT embryos in terms of fusion rates (73.1% and 75.7%, respectively), cleavage rates (69.7% vs. 73.8%) and development to the 8–16-cell stage (40.1% vs. 42.7%). Embryos derived from the transfected cells completely expressed GFP at the 2-cell, 4-cell, and 8–16-cell stages without mosaicism. In summary, our results demonstrated that, following successful isolation of canine transgenic cells, iSCNT embryos developed to early pre-implantation stages in vitro, showing stable GFP expression. These canine–bovine iSCNT embryos can be used for further in vitro analysis of canine transgenic cells and will contribute to the production of various transgenic dogs for use as specific human disease models.


2018 ◽  
Vol 30 (10) ◽  
pp. 1342 ◽  
Author(s):  
Zhao-Bo Luo ◽  
Long Jin ◽  
Qing Guo ◽  
Jun-Xia Wang ◽  
Xiao-Xu Xing ◽  
...  

Accumulating evidence suggests that aberrant epigenetic reprogramming and low pluripotency of donor nuclei lead to abnormal development of cloned embryos and underlie the inefficiency of mammalian somatic cell nuclear transfer (SCNT). The present study demonstrates that treatment with the small molecule RepSox alone upregulates the expression of pluripotency-related genes in porcine SCNT embryos. Treatment with the histone deacetylase inhibitor LBH589 significantly increased the blastocyst formation rate, whereas treatment with RepSox did not. Cotreatment with 12.5 μM RepSox and 50 nM LBH589 (RepSox + LBH589) for 24 h significantly increased the blastocyst formation rate compared with that of untreated embryos (26.9% vs 8.5% respectively; P < 0.05). Furthermore, the expression of pluripotency-related genes octamer-binding transcription factor 4 (NANOG) and SRY (sex determining region Y)-box 2 (SOX2) were found to significantly increased in the RepSox + LBH589 compared with control group at both the 4-cell and blastocyst stages. In particular, the expression of NANOG was 135-fold higher at the blastocyst stage in the RepSox + LBH589 group. Moreover, RepSox + LBH589 improved epigenetic reprogramming. In summary, RepSox + LBH589 increases the expression of developmentally important genes, optimises epigenetic reprogramming and improves the in vitro development of porcine SCNT embryos.


Genes ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 1499
Author(s):  
Zhiguo Liu ◽  
Guangming Xiang ◽  
Kui Xu ◽  
Jingjing Che ◽  
Changjiang Xu ◽  
...  

Somatic cell nuclear transfer (SCNT) is not only a valuable tool for understanding nuclear reprogramming, but it also facilitates the generation of genetically modified animals. However, the development of SCNT embryos has remained an uncontrollable process. It was reported that the SCNT embryos that complete the first cell division sooner are more likely to develop to the blastocyst stage, suggesting their better developmental competence. Therefore, to better understand the underlying molecular mechanisms, RNA-seq of pig SCNT embryos that were early-dividing (24 h postactivation) and late-dividing (36 h postactivation) was performed. Our analysis revealed that early- and late-dividing embryos have distinct RNA profiles, and, in all, 3077 genes were differentially expressed. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses revealed that early-dividing embryos exhibited higher expression in genes that participated in the meiotic cell cycle, while enrichment of RNA processing- and translation-related genes was found in late-dividing embryos. There are also fewer somatic memory genes such as FLRT2, ADAMTS1, and FOXR1, which are abnormally activated or suppressed in early-dividing cloned embryos. These results show that early-dividing SCNT embryos have different transcriptional profiles than late-dividing embryos. Early division of SCNT embryos may be associated with their better reprogramming capacity, and somatic memory genes may act as a reprogramming barrier in pig SCNT reprogramming.


2006 ◽  
Vol 18 (2) ◽  
pp. 123
Author(s):  
G. Coppola ◽  
B.-G. Jeon ◽  
B. Alexander ◽  
E. St. John ◽  
D. H. Betts ◽  
...  

The early reprogramming events following somatic cell nuclear transfer (SCNT) determine the fate of the cloned embryo and its development to a healthy viable offspring. In the present study, we undertook a detailed immunocytochemical study of the patterns of both microtubules and chromatin during the first cell cycle of sheep nuclear transfer embryos after fusion and artificial activation using either 6-dimethylaminopurine (6-DMAP) or cycloheximede (CHX). Sheep oocytes were collected from abattoir ovaries and matured in vitro for 18-20 h and enucleated; fetal fibroblasts were transplanted using standard SCNT techniques. Reconstructed cell-cytoplast couplets were fused and activated with ionomycin, followed by culture in two separate groups containing 6-DMAP (2 mM) or CHX (10 �g/mL) for 3 h. Following activation, embryos were cultured in in vitro culture (IVC) medium for blastocyst development. Embryos (n = 15, 3 replicates) were randomly removed from culture at various time points and stained using standard immunocytochemical methods to observe microtubule and nuclear configurations. Images were captured using laser scanning confocal microscopy. Results reveled that at 1 h post-fusion, 63.3% of reconstructed embryos underwent nuclear envelope breakdown (NEBD) and premature chromosome condensation (PCC) was apparent as chromosomes were situated on a non-polar spindle. The remaining embryos showed abnormal spindle and DNA configurations including chromosome outliers, congression failure, and non-NEBD. At 1 h post-activation (hpa), the embryos treated with 6-DMAP had already formed a clearly visible pronucleus (diameter 6-8 �m), whereas in the CHX-treated group, none of the embryos were at pronuclear stage; instead most of the latter embryos showed two masses of chromatin. At 1 hpa, 6-DMAP- and CHX-treated embryos showed one swelled pronucleus with a mean diameter of 8.4 � 1.3 �m and 25.8 � 0.8 �m, respectively (P < 0.05). At 16 hpa, embryos from both treatment groups still showed one swelled pronucleus. In the 6-DMAP-treated embryos, most of the embryos showed a metaphase spindle with aligned chromosomes of the first mitotic division as early as 18-10 hpa, whereas in the CHX-treated group embryos were still at the pronuclear stage. Typical 2-cell division was seen in most of the 6-DMAP-treated embryos between 24 and 30 hpa, but it was slightly delayed in CHX-treated embryos (32-35 hpa). Blastocyst development rates in the 6-DMAP- and CHX-treated groups were 21.4 � 5.6% and 14.0 � 6.3%, respectively (P < 0.05). In summary, artificial activating agents 6-DMAP and CHX exhibited different effects on chromatin remodeling, cell cycle progression, and the degree of pronuclear swelling which may explain the poor developmental rates and abnormal chromosome complements observed for cloned embryos. This work was funded by NSERC, OMAF, and International Council for Canadian Studies.


2006 ◽  
Vol 18 (2) ◽  
pp. 131
Author(s):  
K. Kaneyama ◽  
S. Kobayashi ◽  
S. Matoba ◽  
Y. Hashiyada ◽  
K. Imai ◽  
...  

Although many studies have been conducted on somatic cell nuclear transfer, there are only a few reports on cryopreservation of reconstructed embryos after nuclear transplantation. The objective of this study was to examine in vitro or in vivo development of vitrified blastocysts obtained by nuclear transfer. Nuclear transfer was carried out according to the procedure of Goto et al. (1999 Anim. Sci. J. 70, 243–245), and conducted using abattoir-derived oocytes and cumulus cells derived by ovum pickup from Holstein and Japanese Black cows. Embryos were vitrified as described by Saito et al. (1998 Cryobiol. Cryotech. 43, 34–39). The vitrification solution (GESX solution) was based on Dulbecco's PBS containing 20% glycerol (GL), 20% ethylene glycol (EG), 0.3 M sucrose (Suc), 0.3 M xylose (Xyl), and 3% polyethylene glycol (PEG). The blastocysts were equilibrated in three steps, with 10% GL, 0.1 M Suc, 0.1 M Xyl, and 1% PEG for 5 min (1); with 10% GL, 10% EG, 0.2 M Suc, 0.2 M Xyl, and 2% PEG for 5 min (2) and GESX solution (3). After transfer to GESX, equilibrated embryos were loaded to 0.25-mL straws and plunged into liquid nitrogen for 1 min. The vitrified blastocysts were warmed in water (20°C) and diluted in 0.5 M and 0.25 M sucrose for 5 min each. Equilibration and dilution procedures were conducted at room temperature (25–26°C). After dilution, the vitrified blastocysts were cultured in TCM-199 supplemented with 20% fetal calf serum and 0.1 mM β-mercaptoethanol at 38.5°C under gas phase of 5% CO2 in air. In Experiment 1, survival rates after vitrification were compared between the nuclear transfer and the IVF blastocysts. Survival rates of vitrified nuclear transfer blastocysts (n = 60, Day 8) at 24 and 48 h were 70.0% and 56.7%, respectively, and those of vitrified IVF blastocysts (n = 41) were 82.9% and 82.9%, respectively. There were no significant differences in survival rates at 24 and 48 h between the two groups. In Experiment 2, one (VIT-single) or two (VIT-double) vitrified and one (nonVIT-single) or two (nonVIT-double) nonvitrified reconstructed blastocysts per animal were transferred into Holstein dry cows. The result of Experiment 2 is shown in Table 1. This experiment demonstrated that the vitrification method in this study can be used for cloned embryo cryopreservation but the production rate should be improved. Table 1. Comparison of survival rates of vitrified or nonvitrified cloned embryos after transfer


2007 ◽  
Vol 19 (1) ◽  
pp. 147
Author(s):  
E. Lee ◽  
K. Song ◽  
Y. Jeong ◽  
S. Hyun

Generally, blastocyst (BL) formation and embryo cell number are used as main parameters to evaluate the viability and quality of in vitro-produced somatic cell nuclear transfer (SCNT) embryos. We investigated whether in vitro development of SCNT pig embryos correlates with in vivo viability after transfer to surrogates. For SCNT, cumulus–oocyte complexes (COCs) were matured in TCM-199 supplemented with follicular fluid, hormones, EGF, cysteine, and insulin for the first 22 h and in a hormone-free medium for 18 h. Three sources of pig skin cells were used as nuclear donor: (1) skin fibroblasts of a cloned piglet that were produced by SCNT of fetal fibroblasts from a Landrace × Yorkshire × Duroc F1 hybrid (LYD), (2) skin fibroblasts of a miniature pig having the human decay accelerating factor gene (hDAF-MP), and (3) skin fibroblasts of a miniature pig with a different strain (MP). MII oocytes were enucleated, subjected to nuclear transfer from a donor cell, electrically fused, and activated 1 h after fusion. SCNT embryos were cultured in a modified NCSU-23 (Park Y et al. 2005 Zygote 13, 269–275) for 6 days or surgically transferred (110–150 fused embryos) into the oviduct of a surrogate that showed standing estrus on the same day as SCNT. Embryos were examined for cleavage and BL formation on Days 2 and 6, respectively (Day 0 = the day of SCNT). BLs were examined for their cell number after staining with Hoechst 33342. Pregnancy was diagnosed by ultrasound 30 and 60 days after embryo transfer. Embryo cleavage was not affected by donor cells (82, 81, and 72% for LYD, hDAF-MP, and MP, respectively), but BL formation was higher (P &lt; 0.05) in hDAF-MP (16%) than in LYD (9%) and MP (6%). MP showed higher (P &lt; 0.05) BL cell number (46 cells/BL) than hDAF-MP (34 cells) but did not show a difference from LYD (37 cells). LYD and MP showed higher pregnancy rates (Table 1) on Days 30 and 60, even though they showed lower BL formation in vitro. Due to a relatively small number of embryo transfers through a limited period, we could not exclude any possible effects by seasonal or operational differences. These results indicated that pregnancy did not correlate with in vitro BL formation of SCNT pig embryos but rather were affected by the source of donor cells. Table 1.In vivo development of somatic cell nuclear transfer pig embryos derived from different sources of donor cells This work was supported by the Research Project on the Production of Bio-organs (No. 200506020601), Ministry of Agriculture and Forestry, Republic of Korea.


Sign in / Sign up

Export Citation Format

Share Document