Artificial oocyte activation and human failed-matured oocyte vitrification followed by in vitro maturation

Zygote ◽  
2011 ◽  
Vol 21 (1) ◽  
pp. 71-76 ◽  
Author(s):  
Y. Liu ◽  
Y.X. Cao ◽  
Z.G. Zhang ◽  
Q. Xing

SummaryThe investigation presented in this paper was conducted on the effect of oocytes activation on frozen–thawed human immature oocytes followed by in vitro maturation (IVM). A total of 386 failed-matured oocytes (germinal vesicle (GV) and metaphase I (MI) stages) was randomly divided into two groups: fresh group and vitrification group, GV group and MI group, respectively). The matured oocytes were subject to intracytoplasmic sperm injection (ICSI) after IVM had been carried out. The vitrification group was randomly divided into two groups: controlled and artificial oocyte activation (AOA). The injected oocytes in the controlled group were cultured in cleavage medium. The AOA group oocytes were activated by exposing them to 7% anhydrous alcohol for 6 min then cultured in cleavage medium as well. The rates of fertilization and early embryonic development were compared between the controlled and AOA groups. In MI vitrification group, the high-quality embryo formation rate and blastocyst formation rate were significantly higher in the AOA group than in the controlled group (P < 0.01). In the GV vitrification group, the high-quality embryo formation rate was significantly higher in the AOA group than in the controlled group (P < 0.05). These results indicate that AOA may be good for early embryonic development of vitrified immature human oocytes.

Zygote ◽  
2002 ◽  
Vol 10 (4) ◽  
pp. 355-366 ◽  
Author(s):  
Kazuhiro Kikuchi ◽  
Hans Ekwall ◽  
Paisan Tienthai ◽  
Yasuhiro Kawai ◽  
Junko Noguchi ◽  
...  

Lipid content in mammalian oocytes or embryos differs among species, with bovine and porcine oocytes and embryos showing large cytoplasmic droplets. These droplets are considered to play important roles in energy metabolism during oocyte maturation, fertilisation and early embryonic development, and also in the freezing ability of oocytes or embryos; however, their detailed distribution or function is not well understood. In the present study, changes in the distribution and morphology of porcine lipid droplets during in vivo and in vitro fertilisation, in contrast to parthenogenetic oocyte activation, as well as during their development to blastocyst stage, were evaluated by transmission electron microscopy (TEM). The analysis of semi-thin and ultra-thin sections by TEM showed conspicuous, large, electron-dense lipid droplets, sometimes associated with mitochondrial aggregates in the oocytes, irrespective of whether the oocytes had been matured in vivo or in vitro. Immediately after sperm penetration, the electron density of the lipid droplets was lost in both the in vivo and in vitro oocytes, the reduction being most evident in the oocytes developed in vitro. Density was restored in the pronculear oocytes, fully in the in vivo specimens but only partially in the in vitro ones. The number and size of the droplets seemed, however, to have decreased. At 2- to 4-cell and blastocyst stages, the features of the lipid droplets were almost the same as those of pronuclear oocytes, showing a homogeneous or saturated density in the in vivo embryos but a marbled or partially saturated appearance in the in vitro embryos. In vitro matured oocytes undergoing parthenogenesis had lipid droplets that resembled those of fertilised oocytes until the pronuclear stage. Overall, results indicate variations in both the morphology and amount of cytoplasmic lipid droplets during porcine oocyte maturation, fertilisation and early embryo development as well as differences between in vivo and in vitro development, suggesting both different energy status during preimplantation development in pigs and substantial differences between in vitro and in vivo development.


2019 ◽  
Author(s):  
Gang Li ◽  
Weiyi Shi ◽  
Wenbin Niu ◽  
Jiawei Xu ◽  
Yihong Guo ◽  
...  

Abstract Background: Balanced complex chromosome rearrangements (BCCR) are balanced chromosomal structural aberrations that involve two or more chromosomes and at least three breakpoints. It is very rare in the population. The objective is to explore the difference of influence of three types of BCCR on early embryonic development and molecular karyotype. Results: Twelve couples were recruited including four couples of three-way rearrangements carriers (group A), three couples of double two-way translocations carriers (group B) and five couples of exceptional CCR carriers (group C). A total of 243 oocytes were retrieved in the seventeen preimplantation genetic testing (PGT) cycles, and 207 of these were available for fertilization. After intracytoplasmic sperm injection, 181 oocytes normally fertilized.The rates of embryos forming on day3 in three groups were 87.88%, 97.78% and 77.14%, which was significantly different (P=0.01). Compared with group B, the rate of embryo formation was statistically significantly lower in group C (P=0.01). Furthermore, the rates of high-quality blastocysts in three group were 14.71%, 48.15% and 62.96%, respectively, which was significantly different (P=0.00). Compared with group B and C, the rate of high-quality blastocysts in group A was statistically significantly lower (P=0.00; P=0.00). Comprehensive chromosome analysis was performed on 83 embryos, including 75 trophectoderm cells and 8 blastomeres. Except 7 embryos failed to amplify, 9.01% embryos were diagnosed as euploidy, and 90.91% were diagnosed as abnormal. As for group A, the euploid embryo rate was 10.71% and the abnormal embryo rate was 89.29%. In group B, the euploid embryo rate was 3.85%, the abnormal embryo rate was 96.15%. The euploid embryo rate was 13.04%, the abnormal embryo rate was 86.96% in group C. There were no significant differences among the three groups (P = 0.55). Conclusions: The double two-way translocations couples have more chance to get balanced or normal embryos probably, and there may be more high-quality blastocysts in exceptional CCRs, but the blastocyst formation rate was similar among the three type of BCCR. Different types of BCCR maybe have little effect on the embryonic molecular karyotype. The difference of influence of BCCR on early embryonic development and molecular karyotype should be further studied.


2020 ◽  
Vol 21 (16) ◽  
pp. 5790
Author(s):  
Min Ju Kim ◽  
Hyo-Jin Park ◽  
Sanghoon Lee ◽  
Hyo-Gu Kang ◽  
Pil-Soo Jeong ◽  
...  

Triclosan (TCS) is included in various healthcare products because of its antimicrobial activity; therefore, many humans are exposed to TCS daily. While detrimental effects of TCS exposure have been reported in various species and cell types, the effects of TCS exposure on early embryonic development are largely unknown. The aim of this study was to determine if TCS exerts toxic effects during early embryonic development using porcine parthenogenetic embryos in vitro. Porcine parthenogenetic embryos were cultured in in vitro culture medium with 50 or 100 µM TCS for 6 days. Developmental parameters including cleavage and blastocyst formation rates, developmental kinetics, and the number of blastomeres were assessed. To determine the toxic effects of TCS, apoptosis, oxidative stress, and mitochondrial dysfunction were assessed. TCS exposure resulted in a significant decrease in 2-cell rate and blastocyst formation rate, as well as number of blastomeres, but not in the cleavage rate. TCS also increased the number of apoptotic blastomeres and the production of reactive oxygen species. Finally, TCS treatment resulted in a diffuse distribution of mitochondria and decreased the mitochondrial membrane potential. Our results showed that TCS exposure impaired porcine early embryonic development by inducing DNA damage, oxidative stress, and mitochondrial dysfunction.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Qiyu Yang ◽  
Lixia Zhu ◽  
Meng Wang ◽  
Bo Huang ◽  
Zhou Li ◽  
...  

Abstract Background To improve the developmental competence of in vitro cultured oocytes, extensive literature focused on maturation rate improvement with different additives in culture medium, while studies investigating the maturation dynamics of oocytes during in vitro maturation (IVM) and the influencing factors on oocyte viability are scarce. Methods The study involved a retrospective observation by time-lapse monitoring of the IVM process of 157 donated GV oocytes from 59 infertile couples receiving ICSI in 2019, in Tongji Hospital, Wuhan, China. The GV oocytes derived from controlled ovarian hyperstimulation (COH) cycles underwent rescue IVM (R-IVM), and the maturation dynamics, including GVBD time (GV-MI), time from GVBD to maturation (MI-MII), maturation time (GV-MII), and MII arrest duration (MII-ICSI), were recorded by time-lapse monitoring. The matured oocytes were inseminated at different MII arrest points and subsequent embryo developments were assessed. The effects of baseline clinical characteristics, oocyte diameters, and maturation dynamics on the developmental competence of the oocytes were also analyzed. Results Totally, 157 GV oocytes were collected. GVBD happened in 111 oocytes, with a median GV-MI duration of 3.7 h. The median MI-MII duration was 15.6 h and the median GV-MII duration was 19.5 h. The maturation rate reached 56.7% at 24 h and 66.9% at 48 h, and the clinical factors, including patient age, FSH level, AMH level, ovarian stimulation protocol, and serum estradiol and progesterone levels on hCG trigger day, showed no effects on the 24-h maturation rate. The normal fertilization rate of oocytes resuming meiosis within 8 h and matured within 24 h was significantly higher than that of oocytes resuming meiosis after 8 h and matured after 24 h. Furthermore, among those oocytes matured within 24 h, the high-quality embryo formation rate of oocytes resuming meiosis within 4.5 h and matured within 19 h was significantly higher. All stated time was measured from the start point of IVM. Additionally, for oocytes from patients with serum progesterone levels less than 1 ng/ml on hCG trigger day, the high-quality embryo formation rate was significantly increased. Conclusion R-IVM technology could increase the available embryos for patients in routine COH cycles, but excessive culture beyond 24 h is not recommended. GV-MI duration of the oocyte, recorded by time-lapse system, and serum progesterone levels of patients on hCG trigger day can significantly affect the developmental potential of the IVM oocytes.


2019 ◽  
Author(s):  
Gang Li ◽  
Weiyi Shi ◽  
Wenbin Niu ◽  
Jiawei Xu ◽  
Yihong Guo ◽  
...  

Abstract Background: Balanced complex rearrangements (BCCR) are balanced chromosomal structural aberrations that involve two or more chromosomes and at least three breakpoints. It is very rare in the population. The objective is to explore the difference of influence of three types of BCCRs on early embryonic development and embryonic molecular karyotype. Results: Twelve couples were recruited including four couples of three-way rearrangements carriers (group A), three couples of double two-way translocations carriers (group B) and five couples of exceptional CCR carriers (group C). After seventeen preimplantation genetic testing (PGT) cycles, 243 oocytes were retrieved, including 207 mature oocytes, and 181 oocytes normally fertilized after intracytoplasmic sperm injection. The number of embryos forming on day3 in three groups were 87.88%, 97.78% and 77.14%, which was significantly different (P=0.01). Compared with group B, the rate of embryo formation was statistically significantly lower in group C (P=0.01). Furthermore, the rates of high-quality blastocysts in three group were 14.71%, 48.15% and 62.96%, respectively, which was significantly different (P=0.00). Compared with group B and C, the rate of high-quality blastocysts in group A was statistically significantly lower (P=0.00; P=0.00). Comprehensive chromosome analysis was performed on 83 embryos, including 75 trophectoderm cells and 8 blastomeres. Except 7 embryos failed to amplify, 9.01% embryos were diagnosed as euploidy, and 90.91% were diagnosed as abnormal. As for group A, the euploid embryo rate was 10.71% and the abnormal embryo rate was 89.29%. In group B, the euploid embryo rate was 3.85%, the abnormal embryo rate was 96.15%. The euploid embryo rate was 13.04%, the abnormal embryo rate was 86.96% in group C. There were no significant differences among the three groups (P = 0.55). Conclusions: The couples of double two-way translocations carriers have more chance to get balanced or normal embryos probably, and there may be more high-quality blastocysts in exceptional CCRs, but the blastocyst formation rate was similar among the three type of BCCR. Different types of BCCR had little effect on the embryonic molecular karyotype. The difference of influence of BCCR on early embryonic development and molecular karyotype should be further studied.


2019 ◽  
Author(s):  
Hua Xu ◽  
Xin Wang ◽  
Zhikai Wang ◽  
Jianhui Li ◽  
Zhiming Xu ◽  
...  

Abstract Background: MicroRNAs (miRNAs) are a class of noncoding small RNAs that play important roles in many physiological processes by regulating gene expression. Previous studies have shown that the expression levels of total miRNAs increase during mouse embryonic development, and some miRNAs control the regulatory network in development progression. However, few studies have focused on the effects of miRNAs on early human embryonic development. The relationship between miRNAs and early human embryogenesis is still unknown. Results:In this study, RNA-seq data collected from sperm samples from 102 patients with a normal sperm index but treated with assisted reproductive technology (ART) were analyzed for the relationships between differentially expressed small RNAs and the fertilization rate (FR), blastocyst rate and high-quality embryo rate (HQER). The sperm samples with high hsa-mir-191 expression had a higher FR, effective embryo rate (EER) and HQER. hsa-mir-191 was used as a single indicator to predict the HQER. The receiver operating characteristic (ROC) curve had an area under the ROC curve (AUC) of 0.686. We also found that hsa-mir-191 expression is correlated with an abnormal sperm rate (cor = 0.29, p< 0.01). We also evaluated the relationship between hsa-mir-34c and early human embryo development in these 102 sperm samples and obtained negative results. Conclusions: These findings suggest that high hsa-mir-191-5p expression in sperm is associated with early human embryonic quality and that hsa-mir-191-5p could be used as a potential marker to screen high-quality sperm to improve the success rates of in vitro fertilization (IVF).


2019 ◽  
Author(s):  
Hua Xu ◽  
Xin Wang ◽  
Zhikai Wang ◽  
Jianhui Li ◽  
Zhiming Xu ◽  
...  

Abstract Background : MicroRNAs (miRNAs) are a class of noncoding small RNAs that play important roles in many physiological processes by regulating gene expression. Previous studies have shown that the expression levels of total miRNAs increase during mouse embryonic development, and some miRNAs control the regulatory network in development progression. However, few studies have focused on the effects of miRNAs on early human embryonic development. The relationship between miRNAs and early human embryogenesis is still unknown. Results: In this study, sperm samples from 102 patients with a normal sperm index but treated with assisted reproductive technology (ART) were collected for small RNA sequencing, and the relationships between differentially expressed small RNAs and the fertilization rate (FR), blastocyst rate and high-quality embryo rate (HQER) were analyzed. The sperm samples with high hsa-mir-191 expression had a higher FR, effective embryo rate (EER) and HQER. hsa-mir-191 was used as a single indicator to predict the HQER. The receiver operating characteristic (ROC) curve had an area under the ROC curve (AUC) of 0.686. We also found that hsa-mir-191 expression is correlated with an abnormal sperm rate (cor = 0.29, p < 0.01). We also evaluated the relationship between hsa-mir-34c and early human embryo development in these 102 sperm samples and obtained negative results. Conclusions: These findings suggest that high hsa-mir-191-5p expression is associated with improved early human embryonic development and that hsa-mir-191-5p could be used as a potential marker to screen high-quality sperm to improve the success rates of in vitro fertilization (IVF).


Sign in / Sign up

Export Citation Format

Share Document