Fusion Pore: An Evolutionary Invention of Nucleated Cells

2010 ◽  
Vol 18 (3) ◽  
pp. 347-364 ◽  
Author(s):  
N. Vardjan ◽  
M. Stenovec ◽  
J. Jorgačevski ◽  
M. Kreft ◽  
R. Zorec

This article outlines the lecture presented by Robert Zorec at the Academia Europea meeting in Liverpool on 19 September 2008, four decades after the Sherrington Lecture of Bernard Katz who, together with his colleagues, developed a number of paradigms addressing vesicles in chemical synapses. Vesicles are subcellular organelles that evolved in eukaryotic cells 1000 to 2000 million years ago. They store signalling molecules such as chemical messengers, which are essential for the function of neurons and endocrine cells in supporting the communication between tissues and organs in the human body. Upon a stimulus, the vesicle-stored signalling molecules (neurotransmitters or hormones) are released from cells. This event involves exocytosis, a fundamental biological process, consisting of the merger of the vesicle membrane with the plasma membrane. The two fusing membranes lead to the formation of an aqueous channel – the fusion pore – through which signalling molecules exit into the extracellular space or blood stream. The work of Bernard Katz and colleagues considered that vesicle cargo discharge initially requires the delivery of vesicles to the plasma membrane, where vesicles dock and get primed for fusion with the plasma membrane, and that stimulation initiates the formation of the transient fusion pore through which cargo molecules leave the vesicle lumen in an all-or-none-fashion. However, recent studies indicate that this may not be so simple. Here we highlight the novel findings which indicate that fusion pores are subject to regulations, which affect the release competence of a single vesicle. At least in pituitary lactotrophs, which are the subject of research in our laboratories, single vesicle release of peptide signalling molecules involves modulation of fusion pore diameter and fusion pore kinetics.

2006 ◽  
Vol 17 (5) ◽  
pp. 2439-2450 ◽  
Author(s):  
Scott Nolan ◽  
Ann E. Cowan ◽  
Dennis E. Koppel ◽  
Hui Jin ◽  
Eric Grote

Mating yeast cells provide a genetically accessible system for the study of cell fusion. The dynamics of fusion pores between yeast cells were analyzed by following the exchange of fluorescent markers between fusion partners. Upon plasma membrane fusion, cytoplasmic GFP and DsRed diffuse between cells at rates proportional to the size of the fusion pore. GFP permeance measurements reveal that a typical fusion pore opens with a burst and then gradually expands. In some mating pairs, a sudden increase in GFP permeance was found, consistent with the opening of a second pore. In contrast, other fusion pores closed after permitting a limited amount of cytoplasmic exchange. Deletion of FUS1 from both mating partners caused a >10-fold reduction in the initial permeance and expansion rate of the fusion pore. Although fus1 mating pairs also have a defect in degrading the cell wall that separates mating partners before plasma membrane fusion, other cell fusion mutants with cell wall remodeling defects had more modest effects on fusion pore permeance. Karyogamy is delayed by >1 h in fus1 mating pairs, possibly as a consequence of retarded fusion pore expansion.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Doron Kabaso ◽  
Ana I. Calejo ◽  
Jernej Jorgačevski ◽  
Marko Kreft ◽  
Robert Zorec ◽  
...  

The fusion pore is an aqueous channel that is formed upon the fusion of the vesicle membrane with the plasma membrane. Once the pore is open, it may close again (transient fusion) or widen completely (full fusion) to permit vesicle cargo discharge. While repetitive transient fusion pore openings of the vesicle with the plasma membrane have been observed in the absence of stimulation, their frequency can be further increased using a cAMP-increasing agent that drives the opening of nonspecific cation channels. Our model hypothesis is that the openings and closings of the fusion pore are driven by changes in the local concentration of cations in the connected vesicle. The proposed mechanism of fusion pore dynamics is considered as follows: when the fusion pore is closed or is extremely narrow, the accumulation of cations in the vesicle (increased cation concentration) likely leads to lipid demixing at the fusion pore. This process may affect local membrane anisotropy, which reduces the spontaneous curvature and thus leads to the opening of the fusion pore. Based on the theory of membrane elasticity, we used a continuum model to explain the rhythmic opening and closing of the fusion pore.


2008 ◽  
Vol 131 (2) ◽  
pp. 117-124 ◽  
Author(s):  
Zhen Zhang ◽  
Meyer B. Jackson

The temperature dependence of Ca2+-triggered exocytosis was studied using carbon fiber amperometry to record the release of norepinephrine from PC12 cells. Single-vesicle fusion events were examined at temperatures varying from 12 to 28°C, and with release elicited by depolarization. Measurements were made of the initial and maximum frequencies of exocytotic events, of fusion pore lifetime, flux through the open fusion pore, kiss-and-run versus full-fusion probability, and parameters associated with the shapes of amperometric spikes. The fusion pore open-state flux, and all parameters associated with spike shape, including area, rise time, and decay time, had weak temperature dependences and activation energies in the range expected for bulk diffusion in an aqueous solution. Kiss-and-run events also varied with temperature, with lower temperatures increasing the relative probability of kiss-and-run events by ∼50%. By contrast, kinetic parameters relating to the frequency of exocytotic events and fusion pore transitions depended much more strongly on temperature, suggesting that these processes entail structural rearrangements of proteins or lipids or both. The weak temperature dependence of spike shape suggests that after the fusion pore has started to expand, structural transitions of membrane components are no longer kinetically limiting. This indicates that the content of a vesicle is expelled completely after fusion pore expansion.


Author(s):  
Alexander Oleinick ◽  
Irina Svir ◽  
Christian Amatore

Vesicular exocytosis is an essential and ubiquitous process in neurons and endocrine cells by which neurotransmitters are released in synaptic clefts or extracellular fluids. It involves the fusion of a vesicle loaded with chemical messengers with the cell membrane through a nanometric fusion pore. In endocrine cells, unless it closes after some flickering (‘Kiss-and-Run’ events), this initial pore is supposed to expand exponentially, leading to a full integration of the vesicle membrane into the cell membrane—a stage called ‘full fusion’. We report here a compact analytical formulation that allows precise measurements of the fusion pore expansion extent and rate to be extracted from individual amperometric spike time courses. These data definitively establish that, during release of catecholamines, fusion pores enlarge at most to approximately one-fifth of the radius of their parent vesicle, hence ruling out the ineluctability of ‘full fusion’.


Author(s):  
Fabio L. Urbina ◽  
Shalini Menon ◽  
Dennis Goldfarb ◽  
Reginald Edwards ◽  
M. Ben Major ◽  
...  

AbstractNeuronal morphogenesis involves dramatic plasma membrane expansion, likely fueled by SNARE-mediated exocytosis. Distinct fusion modes described at neuronal synapses include full-vesicle-fusion (FVF) and kiss-and-run fusion (KNR). During FVF, lumenal cargo is secreted and vesicle membrane incorporates into the plasma membrane. During KNR a transient fusion pore secretes cargo, but closes without membrane addition. In contrast, fusion modes are not described in developing neurons where plasma membrane expansion is significant. Here, we resolve individual exocytic events in developing murine cortical neurons and use new classification tools to identify four distinguishable fusion modes: two FVF-like modes that insert membrane material and two KNR-like modes that do not. Discrete fluorescence profiles suggest distinct behavior of the fusion pore with each mode. Simulations and experiments agree that FVF-like exocytosis provides sufficient membrane material for morphogenesis. We find the E3 ubiquitin ligase TRIM67 promotes FVF-like exocytosis. Our data suggest this is accomplished in part by limiting incorporation of the Qb/Qc SNARE SNAP47 into SNARE complexes and thus, SNAP47 involvement in exocytosis.


2020 ◽  
Vol 152 (9) ◽  
Author(s):  
Ronald W. Holz ◽  
Mary A. Bittner

Central to the exocytotic release of hormones and neurotransmitters is the interaction of four SNARE motifs in proteins on the secretory granule/synaptic vesicle membrane (synaptobrevin/VAMP, v-SNARE) and on the plasma membrane (syntaxin and SNAP25, t-SNAREs). The interaction is thought to bring the opposing membranes together to enable fusion. An underlying motivation for this Viewpoint is to synthesize from recent diverse studies possible new insights about these events. We focus on a recent paper that demonstrates the importance of the linker region joining the two SNARE motifs of the neuronal t-SNARE SNAP25 for maintaining rates of secretion with roles for distinct segments in speeding fusion pore expansion. Remarkably, lipid-perturbing agents rescue a palmitoylation-deficient mutant whose phenotype includes slow fusion pore expansion, suggesting that protein–protein interactions have a role not only in bringing together the granule or vesicle membrane with the plasma membrane but also in orchestrating protein–lipid interactions leading to the fusion reaction. Unexpectedly, biochemical investigations demonstrate the importance of the C-terminal domain of the linker in the formation of the plasma membrane t-SNARE “acceptor” complex for synaptobrevin2. This insight, together with biophysical and optical studies from other laboratories, suggests that the plasma membrane SNARE acceptor complex between SNAP25 and syntaxin and the subsequent trans-SNARE complex with the v-SNARE synaptobrevin form within 100 ms before fusion.


2018 ◽  
Vol 29 (7) ◽  
pp. 834-845 ◽  
Author(s):  
Mounir Bendahmane ◽  
Kevin P. Bohannon ◽  
Mazdak M. Bradberry ◽  
Tejeshwar C. Rao ◽  
Michael W. Schmidtke ◽  
...  

In chromaffin cells, the kinetics of fusion pore expansion vary depending on which synaptotagmin isoform (Syt-1 or Syt-7) drives release. Our recent studies have shown that fusion pores of granules harboring Syt-1 expand more rapidly than those harboring Syt-7. Here we sought to define the structural specificity of synaptotagmin action at the fusion pore by manipulating the Ca2+-binding C2B module. We generated a chimeric Syt-1 in which its C2B Ca2+-binding loops had been exchanged for those of Syt-7. Fusion pores of granules harboring a Syt-1 C2B chimera with all three Ca2+-binding loops of Syt-7 (Syt-1:7C2B123) exhibited slower rates of fusion pore expansion and neuropeptide cargo release relative to WT Syt-1. After fusion, this chimera also dispersed more slowly from fusion sites than WT protein. We speculate that the Syt-1:7 C2B123 and WT Syt-1 are likely to differ in their interactions with Ca2+ and membranes. Subsequent in vitro and in silico data demonstrated that the chimera exhibits a higher affinity for phospholipids than WT Syt-1. We conclude that the affinity of synaptotagmin for the plasma membrane, and the rate at which it releases the membrane, contribute in important ways to the rate of fusion pore expansion.


Author(s):  
Ronald Holz ◽  
Mary Bittner

A recent paper demonstrates the importance of the linker region joining the two SNARE motifs of the neuronal t-SNARE SNAP25 for maintaining rates of secretion with roles for distinct segments in speeding fusion pore expansion (Shaaban et al., 2019, Elife. 8). Remarkably, lipid perturbing agents rescue a palmitoylation-deficient phenotype that includes slow fusion pore expansion, suggesting that protein-protein interactions have a role not only in bringing together the granule or vesicle membrane with the plasma membrane but also in orchestrating protein-lipid interactions leading to the fusion reaction. Furthermore, biochemical investigations demonstrate the importance of the C-terminal domain of the linker in the formation of the plasma membrane t-SNARE acceptor complex for synaptobrevin2 (Jiang, et al., 2019, FASEB J. 33:7985-7994;Shaaban et al., 2019, Elife. 8). This insight, together with biophysical and optical studies from other laboratories (Wang, et al., 2008, Molecular Biology of the Cell. 19:3944-3955; Zhao, et al., 2013, Proc Natl Acad Sci U S A. 110:14249-14254) suggests that the plasma membrane SNARE acceptor complex between SNAP25 and syntaxin and the resulting trans SNARE complex with the v-SNARE synaptobrevin form just milliseconds before fusion.


Author(s):  
Ryan Khounlo ◽  
Brenden J. D. Hawk ◽  
Tung-Mei Khu ◽  
Gyeongji Yoo ◽  
Nam Ki Lee ◽  
...  

SNARE-dependent membrane fusion is essential for neurotransmitter release at the synapse. Recently, α-synuclein has emerged as an important regulator for membrane fusion. Misfolded α-synuclein oligomers are potent fusion inhibitors. However, the function of normal α-synuclein has been elusive. Here, we use the single vesicle-to-supported bilayer fusion assay to dissect the role of α-synuclein in membrane fusion. The assay employs 10 kD Rhodamine B-dextran as the content probe that can detect fusion pores larger than ∼6 nm. We find that the SNARE complex alone is inefficient at dilating fusion pores. However, α-synuclein dramatically increases the probability as well as the duration of large pores. When the SNARE-interacting C-terminal region of α-synuclein was truncated, the mutant behaves the same as the wild-type. However, the double proline mutants compromising membrane-binding show significantly reduced effects on fusion pore expansion. Thus, our results suggest that α-synuclein stimulates fusion pore expansion specifically through its membrane binding.


2021 ◽  
Vol 8 ◽  
Author(s):  
Josh Pierson ◽  
Yeon-Kyun Shin

In the neuron, neurotransmitter release is an essential function that must be both consistent and tightly regulated. The continuity of neurotransmitter release is dependent in large part on vesicle recycling. However, the protein factors that dictate the vesicle recycling pathway are elusive. Here, we use a single vesicle-to-supported bilayer fusion assay to investigate complexin-1 (cpx1)’s influence on SNARE-dependent fusion pore expansion. With total internal reflection (TIR) microscopy using a 10 kDa polymer fluorescence probe, we are able to detect the presence of large fusion pores. With cpx1, however, we observe a significant increase of the probability of the formation of large fusion pores. The domain deletion analysis reveals that the SNARE-binding core domain of cpx1 is mainly responsible for its ability to promote the fusion pore expansion. In addition, the results show that cpx1 helps the pore to expand larger, which results in faster release of the polymer probe. Thus, the results demonstrate a reciprocal relationship between event duration and the size of the fusion pore. Based on the data, a hypothetical mechanistic model can be deduced. In this mechanistic model, the cpx1 binding stabilizes the four-helix bundle structure of the SNARE core throughout the fusion pore expansion, whereby the highly curved bilayer within the fusion pore is stabilized by the SNARE pins.


Sign in / Sign up

Export Citation Format

Share Document