Magnetic Fields and Disks in Star-forming Regions

1993 ◽  
Vol 10 (3) ◽  
pp. 247-249 ◽  
Author(s):  
C.M. Wright ◽  
D.K. Aitken ◽  
C.H. Smith ◽  
P.F. Roche

AbstractThe star-formation process is an outstanding and largely unsolved problem in astrophysics. The role of magnetic fields is unclear but is widely considered to be important at all stages of protostellar evolution, from cloud collapse to ZAMS. For example, in some hydromagnetic models, the field may assist in removing angular momentum, thereby driving accretion and perhaps bipolar outflows.Spectropolarimetry between 8 and 13μm provides information on the direction of the transverse component of a magnetic field through the alignment of dust grains. We present results of 8–13μm spectropolarimetric observations of a number of bipolar molecular outflow sources, and compare the field directions observed with the axes of the outflows and putative disk-like structures observed to be associated with some of the objects. There is a strong correlation, though so far with limited statistics, between the magnetic field and disk orientations. We compare our results with magnetic field configurations predicted by current models for hydromagnetically driven winds from the disks around Young Stellar Objects (YSOs). Our results appear to argue against the Pudritz and Norman model and instead seem to support the Uchida and Shibata model.

1990 ◽  
Vol 140 ◽  
pp. 327-328
Author(s):  
M. Tamura ◽  
S. Sato

Infrared polarimetry is one of the most useful methods to delineate the magnetic field structure in dark clouds and star-forming regions, where the intracloud extinction is so large that optical polarimetry is inaccessible. We have been conducting a near-infrared polarization survey of background field stars and embedded sources toward nearby dark clouds and star-forming regions (Tamura 1988). Particularly, the magnetic field structure in the denser regions of the clouds are well revealed in Heiles Cloud 2 in Taurus, ρ Oph core, and NGC1333 region in Perseus (Tamura et al. 1987; Sato et al. 1988; Tamura et al. 1988). This survey also suggests an interesting geometrical relationship between magnetic field and star-formation: the IR polarization of young stellar sources associated with mass outflow phenomena is perpendicular to the magnetic fields. This relationship suggests a presence of circumstellar matter (probably dust disk) with its plane perpendicular to the ambient magnetic field. Combining with another geometrical relationship that the elongation of the denser regions of the cloud is perpendicular to the magnetic field, the geometry suggests that the cloud contraction and subsequent star-formation have been strongly affected by the magnetic fields. Thus, it is important to study the universality of such geometrical relationship between IR polarization of young stellar sources and magnetic fields. In this paper, we report the results on a 2 micron polarization survey of 39 T Tauri stars, 8 young stellar objects and 11 background field stars in Taurus dark cloud complex.


1990 ◽  
Vol 140 ◽  
pp. 259-267
Author(s):  
L Mestel

The flux from the galactic magnetic field alters radically the appropriate description of the equilibrium, collapse and fragmentation of the self-gravitating gas clouds that are the locale of star formation.


2019 ◽  
Vol 629 ◽  
pp. A96 ◽  
Author(s):  
Juan D. Soler

We present a study of the relative orientation between the magnetic field projected onto the plane of sky (B⊥) on scales down to 0.4 pc, inferred from the polarized thermal emission of Galactic dust observed by Planck at 353 GHz, and the distribution of gas column density (NH) structures on scales down to 0.026 pc, derived from the observations by Herschel in submillimeter wavelengths, toward ten nearby (d < 450 pc) molecular clouds. Using the histogram of relative orientation technique in combination with tools from circular statistics, we found that the mean relative orientation between NH and B⊥ toward these regions increases progressively from 0°, where the NH structures lie mostly parallel to B⊥, with increasing NH, in many cases reaching 90°, where the NH structures lie mostly perpendicular to B⊥. We also compared the relative orientation between NH and B⊥ and the distribution of NH, which is characterized by the slope of the tail of the NH probability density functions (PDFs). We found that the slopes of the NH PDF tail are steepest in regions where NH and B⊥ are close to perpendicular. This coupling between the NH distribution and the magnetic field suggests that the magnetic fields play a significant role in structuring the interstellar medium in and around molecular clouds. However, we found no evident correlation between the star formation rates, estimated from the counts of young stellar objects, and the relative orientation between NH and B⊥ in these regions.


1998 ◽  
Vol 184 ◽  
pp. 371-372
Author(s):  
B. Hutawarakorn ◽  
R. J. Cohen

Masers provide a direct way of measuring magnetic fields in star-forming regions. OH ground-state masers at 18 cm wavelength exhibit strong circular polarization due to Zeeman splitting. The implied magnetic field strength is typically a few mG, which is sufficient for the field to be dynamically important, e.g. in channelling the observed bipolar outflows. Moreover there are indications that magnetic fields in maser regions are aligned with the large-scale Galactic magnetic field (Reid & Silverstein 1990), and that bipolar molecular outflows are also aligned with the local Galactic magnetic field (Cohen, Rowland & Blair 1984). Some theoretical work in fact suggests that the magnetic field is intimately connected with the origin of the molecular outflow (e.g. Pudritz & Norman 1983; Uchida & Shibata 1985). It is therefore important to investigate the magnetic field configuration in these regions in as much detail as possible.


2018 ◽  
Vol 14 (A30) ◽  
pp. 102-102
Author(s):  
Jungmi Kwon

AbstractMagnetic fields are ubiquitous in various scales of astronomical objects, and they are considered as playing significant roles from star to galaxy formations. However, the role of the magnetic fields in star forming regions is less well understood because conventional optical polarimetry is hampered by heavy extinction by dust. We have been conducting extensive near-infrared polarization survey of various star-forming regions from low- and intermediate-mass to high-mass star-forming regions, using IRSF/SIRPOL in South Africa. Not only linear but also circular polarizations have been measured for more than a dozen of regions. Both linear and circular polarimetric observations at near-infrared wavelengths are useful tools to study the magnetic fields in star forming regions, although infrared circular polarimetry has been less explored so far. In this presentation, we summarize our results of the near-infrared polarization survey of star forming regions and its comparison with recent submillimeter polarimetry results. Such multi-wavelength approaches can be extended to the polarimetry using ALMA, SPICA in future, and others. We also present our recent results of the first near-infrared imaging polarimetry of young stellar objects in the Circinus molecular cloud, which has been less studied but a very intriguing cluster containing numerous signs of active low-mass star formation.


2018 ◽  
Vol 14 (A30) ◽  
pp. 101-101
Author(s):  
Juan D. Soler

AbstractThis review examines observations of magnetic fields in molecular clouds, that is, at spatial scales ranging from tens to tenths of parsecs and densities up to hundreds of particles per cubic centimetre. I will briefly summarize the techniques for observing and mapping magnetic fields in molecular clouds. I will review important examples of observational results obtained using each technique and their implications for our understanding of the role of the magnetic field in molecular cloud formation and evolution. Finally, I will briefly discuss the prospects for advances in our observational capabilities with telescopes and instruments now beginning operation or under construction.


2007 ◽  
Vol 3 (S243) ◽  
pp. 63-70
Author(s):  
Rachel L. Curran ◽  
Antonio Chrysostomou ◽  
Brenda C. Matthews

AbstractSubmillimetre imaging polarimetry is one of the most powerful tools at present for studying magnetic fields in star-forming regions, and the only way to gain significant information on the structure of these fields. We present analysis of the largest sample (to date) of both high- and low-mass star-forming regions observed using this technique. A variety of magnetic field morphologies are observed, with no single field morphology favoured. Both the continuum emission morphologies and the field morphologies are generally more complex for the high-mass sample than the low-mass sample. The large scale magnetic field (observed with the JCMT; 14″ resolution) of NGC1333 IRAS2 is interpreted to be weak (compared to the energetic contributions due to turbulence) from the random field pattern observed. On smaller scales (observed with the BIMA array; 3″ resolution) the field is observed to be almost radial, consistent with the polarisation nulls in the JCMT data – suggesting that on smaller scales, the field may be more important to the star formation process. An analysis of the magnetic field direction and the jet/outflow axis is also discussed. Cumulative distribution functions of the difference between the mean position angle of the magnetic field vectors and the jet/outflow axis reveal no correlation. However, visual inspection of the maps reveal alignment of the magnetic field and jet/outflow axis in 7 out of 15 high-mass regions and 3 out of 8 low-mass regions.


2017 ◽  
Vol 13 (S336) ◽  
pp. 297-298
Author(s):  
Jeong-Sook Kim ◽  
Soon-Wook Kim

AbstractCepheus A is the second nearest high mass star-forming region after Orion. It is characterized by the presence of several phenomena, such as a complex molecular outflow, and multiple radio continuum sources, known as HW sources. The radio continuum and water maser emission have been detected toward HW2, HW3b and HW3d regions, and all of them are considered harboring young stellar objects. In 2014, we performed KaVA observations and detected a new bright maser feature, ~700 mas apart from HW3d, which has not been detected with previous VLBI observations. The relative proper motion of the new maser feature is faster than other regions. It can be a clue for a newly forming star. Alternatively, it may be caused by outflow shock from the star-forming regions such as HW3d or HW3c.


1984 ◽  
Vol 110 ◽  
pp. 333-334
Author(s):  
J.A. Garcia-Barreto ◽  
B. F. Burke ◽  
M. J. Reid ◽  
J. M. Moran ◽  
A. D. Haschick

Magnetic fields play a major role in the general dynamics of astronomical phenomena and particularly in the process of star formation. The magnetic field strength in galactic molecular clouds is of the order of few tens of μG. On a smaller scale, OH masers exhibit fields of the order of mG and these can probably be taken as representative of the magnetic field in the dense regions surrounding protostars. The OH molecule has been shown to emit highly circular and linearly polarized radiation. That it was indeed the action of the magnetic field that would give rise to the highly polarized spectrum of OH has been shown by the VLBI observations of Zeeman pairs of the 1720 and 6035 MHz by Lo et. al. and Moran et. al. VLBI observations of W3 (OH) revealed that the OH emission was coming from numerous discrete locations and that all spots fell within the continuum contours of the compact HII region. The most detailed VLBI aperture synthesis experiment of the 1665 MHz emission from W3 (OH) was carried out by Reid et. al. who found several Zeeman pairs and a characteristic maser clump size of 30 mas. In this work, we report the results of a 5 station VLBI aperture synthesis experiment of the 1665 MHz OH emission from W3 (OH) with full polarization information. We produced VLBI synthesis maps of all Stokes parameters of 16 spectral features that showed elliptical polarization. The magnitude and direction of the magnetic field have been obtained by the detection of 7 Zeeman pairs. The three dimensional orientation of the magnetic field can be obtained, following the theoretical arguments of Goldreich et. al., from the observation of π and σ components.


2010 ◽  
Vol 6 (S270) ◽  
pp. 103-106
Author(s):  
R. Rao ◽  
J.-M. Girart ◽  
D. P. Marrone

AbstractThere have been a number of theoretical and computational models which state that magnetic fields play an important role in the process of star formation. Competing theories instead postulate that it is turbulence which is dominant and magnetic fields are weak. The recent installation of a polarimetry system at the Submillimeter Array (SMA) has enabled us to conduct observations that could potentially distinguish between the two theories. Some of the nearby low mass star forming regions show hour-glass shaped magnetic field structures that are consistent with theoretical models in which the magnetic field plays a dominant role. However, there are other similar regions where no significant polarization is detected. Future polarimetry observations made by the Submillimeter Array should be able to increase the sample of observed regions. These measurements will allow us to address observationally the important question of the role of magnetic fields and/or turbulence in the process of star formation.


Sign in / Sign up

Export Citation Format

Share Document