scholarly journals The Role of Magnetic Fields in Star Forming Regions

1990 ◽  
Vol 140 ◽  
pp. 259-267
Author(s):  
L Mestel

The flux from the galactic magnetic field alters radically the appropriate description of the equilibrium, collapse and fragmentation of the self-gravitating gas clouds that are the locale of star formation.

2010 ◽  
Vol 6 (S270) ◽  
pp. 103-106
Author(s):  
R. Rao ◽  
J.-M. Girart ◽  
D. P. Marrone

AbstractThere have been a number of theoretical and computational models which state that magnetic fields play an important role in the process of star formation. Competing theories instead postulate that it is turbulence which is dominant and magnetic fields are weak. The recent installation of a polarimetry system at the Submillimeter Array (SMA) has enabled us to conduct observations that could potentially distinguish between the two theories. Some of the nearby low mass star forming regions show hour-glass shaped magnetic field structures that are consistent with theoretical models in which the magnetic field plays a dominant role. However, there are other similar regions where no significant polarization is detected. Future polarimetry observations made by the Submillimeter Array should be able to increase the sample of observed regions. These measurements will allow us to address observationally the important question of the role of magnetic fields and/or turbulence in the process of star formation.


2020 ◽  
Vol 493 (1) ◽  
pp. 199-233 ◽  
Author(s):  
C S Ogbodo ◽  
J A Green ◽  
J R Dawson ◽  
S L Breen ◽  
S A Mao ◽  
...  

ABSTRACT From targeted observations of ground-state hydroxyl (OH) masers towards 702 Methanol Multibeam survey 6.7-GHz methanol masers, in the Galactic longitude range from 186° through the Galactic Centre to 20°, made as part of the ‘MAGMO’ (Mapping the Galactic Magnetic field through OH masers) project, we present the physical and polarization properties of the 1720-MHz OH maser transition, including the identification of Zeeman pairs. We present 10 new and 23 previously catalogued 1720-MHz OH maser sources detected towards star-forming regions (SFRs). In addition, we also detected 16 1720-MHz OH masers associated with supernova remnants and two sites of diffuse OH emission. Towards the 33 star formation masers, we identify 44 Zeeman pairs, implying magnetic field strengths ranging from −11.4 to +13.2 mG, and a median magnetic field strength of |BLOS| ∼ 6 mG. With limited statistics, we present the in situ magnetic field orientation of the masers and the Galactic magnetic field distribution revealed by the 1720-MHz transition. We also examine the association statistics of 1720-MHz OH SFR masers with other ground-state OH masers, excited-state OH masers, class I and class II methanol masers, and water masers, and compare maser positions with mid-infrared images of the parent SFRs. Of the 33 1720-MHz star formation masers, 10 are offset from their central exciting sources, and appear to be associated with outflow activity.


1993 ◽  
Vol 10 (3) ◽  
pp. 247-249 ◽  
Author(s):  
C.M. Wright ◽  
D.K. Aitken ◽  
C.H. Smith ◽  
P.F. Roche

AbstractThe star-formation process is an outstanding and largely unsolved problem in astrophysics. The role of magnetic fields is unclear but is widely considered to be important at all stages of protostellar evolution, from cloud collapse to ZAMS. For example, in some hydromagnetic models, the field may assist in removing angular momentum, thereby driving accretion and perhaps bipolar outflows.Spectropolarimetry between 8 and 13μm provides information on the direction of the transverse component of a magnetic field through the alignment of dust grains. We present results of 8–13μm spectropolarimetric observations of a number of bipolar molecular outflow sources, and compare the field directions observed with the axes of the outflows and putative disk-like structures observed to be associated with some of the objects. There is a strong correlation, though so far with limited statistics, between the magnetic field and disk orientations. We compare our results with magnetic field configurations predicted by current models for hydromagnetically driven winds from the disks around Young Stellar Objects (YSOs). Our results appear to argue against the Pudritz and Norman model and instead seem to support the Uchida and Shibata model.


1998 ◽  
Vol 184 ◽  
pp. 371-372
Author(s):  
B. Hutawarakorn ◽  
R. J. Cohen

Masers provide a direct way of measuring magnetic fields in star-forming regions. OH ground-state masers at 18 cm wavelength exhibit strong circular polarization due to Zeeman splitting. The implied magnetic field strength is typically a few mG, which is sufficient for the field to be dynamically important, e.g. in channelling the observed bipolar outflows. Moreover there are indications that magnetic fields in maser regions are aligned with the large-scale Galactic magnetic field (Reid & Silverstein 1990), and that bipolar molecular outflows are also aligned with the local Galactic magnetic field (Cohen, Rowland & Blair 1984). Some theoretical work in fact suggests that the magnetic field is intimately connected with the origin of the molecular outflow (e.g. Pudritz & Norman 1983; Uchida & Shibata 1985). It is therefore important to investigate the magnetic field configuration in these regions in as much detail as possible.


2018 ◽  
Vol 14 (A30) ◽  
pp. 132-132
Author(s):  
Swetlana Hubrig ◽  
Markus Schöller ◽  
Silva P. Järvinen

AbstractOne idea for the origin of magnetic fields in massive stars suggests that the magnetic field is the fossil remnant of the Galactic ISM magnetic field, amplified during the collapse of the magnetised gas cloud. A search for the presence of magnetic fields in massive stars located in active sites of star formation led to the detection of rather strong magnetic fields in a few young stars. Future spectropolarimetric observations are urgently needed to obtain insights into the mechanisms that drive the generation of kG magnetic fields during high-mass star formation.


1990 ◽  
Vol 140 ◽  
pp. 327-328
Author(s):  
M. Tamura ◽  
S. Sato

Infrared polarimetry is one of the most useful methods to delineate the magnetic field structure in dark clouds and star-forming regions, where the intracloud extinction is so large that optical polarimetry is inaccessible. We have been conducting a near-infrared polarization survey of background field stars and embedded sources toward nearby dark clouds and star-forming regions (Tamura 1988). Particularly, the magnetic field structure in the denser regions of the clouds are well revealed in Heiles Cloud 2 in Taurus, ρ Oph core, and NGC1333 region in Perseus (Tamura et al. 1987; Sato et al. 1988; Tamura et al. 1988). This survey also suggests an interesting geometrical relationship between magnetic field and star-formation: the IR polarization of young stellar sources associated with mass outflow phenomena is perpendicular to the magnetic fields. This relationship suggests a presence of circumstellar matter (probably dust disk) with its plane perpendicular to the ambient magnetic field. Combining with another geometrical relationship that the elongation of the denser regions of the cloud is perpendicular to the magnetic field, the geometry suggests that the cloud contraction and subsequent star-formation have been strongly affected by the magnetic fields. Thus, it is important to study the universality of such geometrical relationship between IR polarization of young stellar sources and magnetic fields. In this paper, we report the results on a 2 micron polarization survey of 39 T Tauri stars, 8 young stellar objects and 11 background field stars in Taurus dark cloud complex.


2018 ◽  
Vol 14 (A30) ◽  
pp. 101-101
Author(s):  
Juan D. Soler

AbstractThis review examines observations of magnetic fields in molecular clouds, that is, at spatial scales ranging from tens to tenths of parsecs and densities up to hundreds of particles per cubic centimetre. I will briefly summarize the techniques for observing and mapping magnetic fields in molecular clouds. I will review important examples of observational results obtained using each technique and their implications for our understanding of the role of the magnetic field in molecular cloud formation and evolution. Finally, I will briefly discuss the prospects for advances in our observational capabilities with telescopes and instruments now beginning operation or under construction.


2007 ◽  
Vol 3 (S243) ◽  
pp. 63-70
Author(s):  
Rachel L. Curran ◽  
Antonio Chrysostomou ◽  
Brenda C. Matthews

AbstractSubmillimetre imaging polarimetry is one of the most powerful tools at present for studying magnetic fields in star-forming regions, and the only way to gain significant information on the structure of these fields. We present analysis of the largest sample (to date) of both high- and low-mass star-forming regions observed using this technique. A variety of magnetic field morphologies are observed, with no single field morphology favoured. Both the continuum emission morphologies and the field morphologies are generally more complex for the high-mass sample than the low-mass sample. The large scale magnetic field (observed with the JCMT; 14″ resolution) of NGC1333 IRAS2 is interpreted to be weak (compared to the energetic contributions due to turbulence) from the random field pattern observed. On smaller scales (observed with the BIMA array; 3″ resolution) the field is observed to be almost radial, consistent with the polarisation nulls in the JCMT data – suggesting that on smaller scales, the field may be more important to the star formation process. An analysis of the magnetic field direction and the jet/outflow axis is also discussed. Cumulative distribution functions of the difference between the mean position angle of the magnetic field vectors and the jet/outflow axis reveal no correlation. However, visual inspection of the maps reveal alignment of the magnetic field and jet/outflow axis in 7 out of 15 high-mass regions and 3 out of 8 low-mass regions.


2020 ◽  
Vol 638 ◽  
pp. A7 ◽  
Author(s):  
A. Zavagno ◽  
Ph. André ◽  
F. Schuller ◽  
N. Peretto ◽  
Y. Shimajiri ◽  
...  

Context. Massive stars and their associated ionized (H II) regions could play a key role in the formation and evolution of filaments that host star formation. However, the properties of filaments that interact with H II regions are still poorly known. Aims. To investigate the impact of H II regions on the formation of filaments, we imaged the Galactic H II region RCW 120 and its surroundings where active star formation takes place and where the role of ionization feedback on the star formation process has already been studied. Methods. We used the large-format bolometer camera ArTéMiS on the APEX telescope and combined the high-resolution ArTéMiS data at 350 and 450 μm with Herschel-SPIRE/HOBYS data at 350 and 500 μm to ensure good sensitivity to a broad range of spatial scales. This allowed us to study the dense gas distribution around RCW 120 with a resolution of 8′′ or 0.05 pc at a distance of 1.34 kpc. Results. Our study allows us to trace the median radial intensity profile of the dense shell of RCW 120. This profile is asymmetric, indicating a clear compression from the H II region on the inner part of the shell. The profile is observed to be similarly asymmetric on both lateral sides of the shell, indicating a homogeneous compression over the surface. On the contrary, the profile analysis of a radial filament associated with the shell, but located outside of it, reveals a symmetric profile, suggesting that the compression from the ionized region is limited to the dense shell. The mean intensity profile of the internal part of the shell is well fitted by a Plummer-like profile with a deconvolved Gaussian full width at half maximum of 0.09 pc, as observed for filaments in low-mass star-forming regions. Conclusions. Using ArTéMiS data combined with Herschel-SPIRE data, we found evidence for compression from the inner part of the RCW 120 ionized region on the surrounding dense shell. This compression is accompanied with a significant (factor 5) increase of the local column density. This study suggests that compression exerted by H II regions may play a key role in the formation of filaments and may further act on their hosted star formation. ArTéMiS data also suggest that RCW 120 might be a 3D ring, rather than a spherical structure.


2008 ◽  
Vol 4 (S259) ◽  
pp. 97-98 ◽  
Author(s):  
Nobuhiko Kusakabe ◽  
Motohide Tamura ◽  
Ryo Kandori ◽  

AbstractMagnetic fields are believed to play an important role in star formation. We observed M42 and Mon R2 massive star forming regions using the wide-field (8′ × 8′) near-infrared imaging polarimeter SIRPOL in South Africa. Magnetic fields are mapped on the basis of dichroic polarized light from hundreds of young stars embedded in the regions. We found “hourglass shaped” magnetic field structure toward OMC-1 region, which is very consistent with magnetic fields traced by using dust emission polarimetry at sub-mm to FIR wavelengths. In the Mon R2 region, we found “S-shaped” magnetic field structure across the massive protostar IRS 1 and IRS 2. We will present the results of comparison of magnetic fields at NIR with those at other wavelengths.


Sign in / Sign up

Export Citation Format

Share Document