Extracting possessions from text: Experiments and error analysis

2021 ◽  
pp. 1-22
Author(s):  
Dhivya Chinnappa ◽  
Eduardo Blanco

Abstract This paper presents a corpus and experiments to mine possession relations from text. Specifically, we target alienable and control possessions and assign temporal anchors indicating when a possession relation holds between the possessor and possessee. We work with intra-sentential possessor and possessees that satisfy lexical and syntactic constraints. We experiment with traditional classifiers and neural networks to automate the task. In addition, we analyze the factors that help to determine possession existence and possession type and common errors made by the best performing classifiers. Experimental results show that determining possession existence relies on the entire sentence, whereas determining possession type primarily relies on the verb, possessor and possessee.

Author(s):  
Chiraz Ben Jabeur ◽  
Hassene Seddik

Abstract In this paper a complete methodology of modeling and control of quad-rotor aircraft is exposed. In fact, a PD on-line optimized Neural Networks Approach (PD-NN) is developed and applied to control the attitude of a quad-rotor that is evolving in hostile environment with wind gust disturbances and should maintain its position despite of these troubles. Whereas PD classical controllers are dedicated for the positions, altitude and speed control. The main objective of this work is to develop a smart Self-Tuning PD controller for attitude angles control, based on neural networks capable of controlling the quad-rotor for an optimized performance thus following a desired trajectory. Many problems could arise if the quad-rotor is evolving in hostile environments presenting irregular troubles such as wind gusts modeled and applied to the overall system. The quad-rotor has to rapidly achieve tasks while guaranteeing stability and precision and must behave quickly with regards to decision making fronting turbulences. This technique offers some advantages over conventional control methods such as PD controllers. Simulation results are achieved with the use of Matlab/Simulink environment and are established on a comparative study between PD and PD-NN controllers founded on wind disturbances application. These obstacles are applied with numerous degrees of strength to test the quad-rotor comportment. Experimental results are reached with the use of the V-REP environment with which some trajectories are tracked and then applied on a BLADE Inductrix FPV+. These simulations and experimental results are acceptable and have confirmed the efficiency of the proposed PD-NN approach. In fact, this controller has fairly smaller errors than the PD controller and has an improved ability to reject troubles. Moreover, it has confirmed to be extremely vigorous and efficient fronting disturbances in the form of wind disturbances.


2021 ◽  
Vol 40 (1) ◽  
pp. 551-563
Author(s):  
Liqiong Lu ◽  
Dong Wu ◽  
Ziwei Tang ◽  
Yaohua Yi ◽  
Faliang Huang

This paper focuses on script identification in natural scene images. Traditional CNNs (Convolution Neural Networks) cannot solve this problem perfectly for two reasons: one is the arbitrary aspect ratios of scene images which bring much difficulty to traditional CNNs with a fixed size image as the input. And the other is that some scripts with minor differences are easily confused because they share a subset of characters with the same shapes. We propose a novel approach combing Score CNN, Attention CNN and patches. Attention CNN is utilized to determine whether a patch is a discriminative patch and calculate the contribution weight of the discriminative patch to script identification of the whole image. Score CNN uses a discriminative patch as input and predict the score of each script type. Firstly patches with the same size are extracted from the scene images. Secondly these patches are used as inputs to Score CNN and Attention CNN to train two patch-level classifiers. Finally, the results of multiple discriminative patches extracted from the same image via the above two classifiers are fused to obtain the script type of this image. Using patches with the same size as inputs to CNN can avoid the problems caused by arbitrary aspect ratios of scene images. The trained classifiers can mine discriminative patches to accurately identify some confusing scripts. The experimental results show the good performance of our approach on four public datasets.


2007 ◽  
Vol 40 (15) ◽  
pp. 239-244 ◽  
Author(s):  
Pedro Almeida ◽  
Ricardo Bencatel ◽  
Gil M. Gonçalves ◽  
JoãTo Borges Sousa ◽  
Christoph Ruetz

2008 ◽  
Vol 17 (3) ◽  
pp. 365-376 ◽  
Author(s):  
Abdoul-Fatah Kanta ◽  
Ghislain Montavon ◽  
Michel Vardelle ◽  
Marie-Pierre Planche ◽  
Christopher C. Berndt ◽  
...  

2021 ◽  
pp. 1-11
Author(s):  
Oscar Herrera ◽  
Belém Priego

Traditionally, a few activation functions have been considered in neural networks, including bounded functions such as threshold, sigmoidal and hyperbolic-tangent, as well as unbounded ReLU, GELU, and Soft-plus, among other functions for deep learning, but the search for new activation functions still being an open research area. In this paper, wavelets are reconsidered as activation functions in neural networks and the performance of Gaussian family wavelets (first, second and third derivatives) are studied together with other functions available in Keras-Tensorflow. Experimental results show how the combination of these activation functions can improve the performance and supports the idea of extending the list of activation functions to wavelets which can be available in high performance platforms.


2017 ◽  
Vol 107 (07-08) ◽  
pp. 536-540
Author(s):  
S. J. Pieczona ◽  
F. Muratore ◽  
M. F. Prof. Zäh

Zur Dynamiksteigerung von Scannersystemen werden verschiedene Arten von Modellierungs- und Regelungsmethoden in der Forschung genutzt. Jedoch sind Nichtlinearitäten, welche das Systemverhalten nachweisbar beeinflussen, in aller Regel nicht Teil der Untersuchung. Mit der Anwendung künstlicher neuronaler Netzwerke (KNN) wird das gesamte dynamische Systemverhalten sowohl für ein geregeltes als auch für ein ungeregeltes Scannersystem abgebildet. So wird geklärt, ob sich diese Art der Modellbildung für eine zukünftige Dynamiksteigerung eignet.   To enhance the dynamics of a scanner system, different methods of modelling and control are utilized. Nonlinearities, which have a certain impact on the system’s behavior, are generally ignored, though. By applying artificial neural networks, the overall dynamics of a controlled and an uncontrolled scanner could be represented. Thus, it will be clarified whether this kind of modelling is appropriate for a future dynamic enhancement.


Sign in / Sign up

Export Citation Format

Share Document