Conflict adaptation and cognitive control adjustments following traumatic brain injury

2009 ◽  
Vol 15 (6) ◽  
pp. 927-937 ◽  
Author(s):  
MICHAEL J. LARSON ◽  
DAVID A.S. KAUFMAN ◽  
WILLIAM M. PERLSTEIN

AbstractSurvivors of severe traumatic brain injury (TBI) often demonstrate impairments in the cognitive control functions of detecting response conflict and signaling for recruitment of cognitive resources to appropriately adjust performance. These cognitive control functions can be measured using conflict adaptation effects, wherein manifestations of conflict detection and processing are reduced following high- relative to low-conflict trials. Event-related potentials (ERPs) were collected while 18 survivors of severe traumatic brain injury (TBI) and 21 demographically matched control participants performed a modified Stroop task. The incongruent-minus-congruent trial Stroop effect for trials preceded by incongruent (high conflict) and congruent (low conflict) trials were compared for behavioral (response time [RT] and error rate) and ERP reflections of cognitive control. Behavioral data showed a reduction in the Stroop effect for both control and TBI participant RTs when preceded by incongruent trials. The magnitude of these effects did not differentiate control and TBI participants. ERP data revealed a centro-parietal conflict slow potential (conflict SP) that differentiated incongruent from congruent trials. Planned comparisons showed a decreased amplitude conflict SP when ERPs were preceded by incongruent trials in control, but not TBI participants. Results indicate subtle TBI-related impairments in conflict resolution mechanisms in the context of intact RT-related conflict adaptation. (JINS, 2009, 15, 927–937.)

2017 ◽  
Vol 34 (22) ◽  
pp. 3124-3133 ◽  
Author(s):  
Solveig L. Hauger ◽  
Kjell Olafsen ◽  
Caroline Schnakers ◽  
Nada Andelic ◽  
Kristian Bernhard Nilsen ◽  
...  

2008 ◽  
Vol 20 (2) ◽  
pp. 255-267 ◽  
Author(s):  
Duncan E. Astle ◽  
G. M. Jackson ◽  
R. Swainson

The ability to change our behavior is one that we frequently exert, although determining the mechanisms by which we do so is far from trivial. Task switching is a useful experimental paradigm for studying cognitive control functions. Switching between tasks is associated with a decrement in performance, or “switch-cost,” relative to repeating the same task. We have previously demonstrated that this cost is dependent on switching from performing one task to performing another; changing only our intended performance does not elicit the same performance deficit. Using event-related potentials (ERPs), we dissociated two electrophysiological indices mirroring this behavioral distinction [Astle, D. E., Jackson, G. M., & Swainson, R. Dissociating neural indices of dynamic cognitive control in advance task-set preparation: An ERP study of task switching. Brain Res, 1125, 94–103, 2006]. However, what was unclear were the specific aspects of performance that were critical for triggering the neural mechanisms associated specifically with switching from a previously performed task. Two candidate aspects were: (i) that performance required a physical response and (ii) that the two tasks shared their responses (they had bivalent response mappings). The present study therefore compared three separate groups to explore the effects of these different aspects of performance. Each group completed the same basic task-switching paradigm, but with either an overt response or covert response, and either switching between tasks that shared their responses (bivalent response mappings) or had separate responses (univalent response mappings). When comparing precue-locked ERPs, we observed three separable components: one common to all three groups, one which primarily dissociated overt from covert responding, and one which primarily dissociated bivalent from univalent responding. We therefore concluded that changing our behavior engages at least three dissociable mechanisms. Interestingly, in the overt conditions, residual switch-costs were absent; in addition, therefore, we concluded that it is possible to engage cognitive control in advance, such that the new behavior is as efficient as were the subject to have repeated the old behavior.


Neurology ◽  
2017 ◽  
Vol 88 (15) ◽  
pp. 1392-1399 ◽  
Author(s):  
Emily L. Dennis ◽  
Faisal Rashid ◽  
Monica U. Ellis ◽  
Talin Babikian ◽  
Roza M. Vlasova ◽  
...  

Objective:To examine longitudinal trajectories of white matter organization in pediatric moderate/severe traumatic brain injury (msTBI) over a 12-month period.Methods:We studied 21 children (16 M/5 F) with msTBI, assessed 2–5 months postinjury and again 13–19 months postinjury, as well as 20 well-matched healthy control children. We assessed corpus callosum function through interhemispheric transfer time (IHTT), measured using event-related potentials, and related this to diffusion-weighted MRI measures of white matter (WM) microstructure. At the first time point, half of the patients with TBI had significantly slower IHTT (TBI-slow-IHTT, n = 11) and half were in the normal range (TBI-normal-IHTT, n = 10).Results:The TBI-normal-IHTT group did not differ significantly from healthy controls, either in WM organization in the chronic phase or in the longitudinal trajectory of WM organization between the 2 evaluations. In contrast, the WM organization of the TBI-slow-IHTT group was significantly lower than in healthy controls across a large portion of the WM. Longitudinal analyses showed that the TBI-slow-IHTT group experienced a progressive decline between the 2 evaluations in WM organization throughout the brain.Conclusions:We present preliminary evidence suggesting a potential biomarker that identifies a subset of patients with impaired callosal organization in the first months postinjury who subsequently experience widespread continuing and progressive degeneration in the first year postinjury.


2016 ◽  
Vol 59 (4) ◽  
pp. 759-771 ◽  
Author(s):  
Sarah E. Key-DeLyria

PurposeSentence processing can be affected following a traumatic brain injury (TBI) due to linguistic or cognitive deficits. Language-related event-related potentials (ERPs), particularly the P600, have not been described in individuals with TBI history.MethodFour young adults with a history of closed head injury participated. Two had severe injuries, and 2 had mild–moderate injuries more than 24 months prior to testing. ERPs were recorded while participants read sentences designed to be grammatically correct or incorrect. Participants also completed cognitive and sentence comprehension measures.ResultsOne participant with TBI was significantly different than the control group on several behavioral sentence measures and 1 cognitive measure. However, none of the participants with TBI had a reliable P600 effect. Nonparametric bootstrapping indicated that the ERP was reliable in 10 control participants but no participants with TBI history.ConclusionsThere were few behavioral differences between individuals with TBI history and the control group, though all reported subjective difficulty with reading. The P600 was absent in the TBI group in this study. Given the heterogeneity of individuals with TBI and the difficulty in assessing subtle language impairments, exploring the P600 further may provide useful insight into language processing difficulties.


2007 ◽  
Vol 21 (1) ◽  
pp. 36-45 ◽  
Author(s):  
Randall S. Scheibel ◽  
Mary R. Newsome ◽  
Joel L. Steinberg ◽  
Deborah A. Pearson ◽  
Ronald A. Rauch ◽  
...  

2014 ◽  
Vol 224 (3) ◽  
pp. 324-334 ◽  
Author(s):  
Neil W. Bailey ◽  
Kate E. Hoy ◽  
Jerome J. Maller ◽  
Rebecca A. Segrave ◽  
Richard Thomson ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document