scholarly journals Motivational Sensitivities Linked to Impulsive Motor Errors in Parkinson’s Disease

2017 ◽  
Vol 24 (2) ◽  
pp. 128-138
Author(s):  
Richard Laurent ◽  
Nelleke Corine van Wouwe ◽  
Maxim Turchan ◽  
Christopher Tolleson ◽  
Fenna Phibbs ◽  
...  

AbstractObjectives: We investigated how broad motivational tendencies are related to the expression and suppression of action impulses in Parkinson’s disease (PD). Methods: Sixty-nine participants with PD completed a Simon response conflict task and Behavioral Inhibition System (BIS) and Behavioral Activation System (BAS) scales based on Gray’s (1987) reinforcement sensitivity theory. Analyses determined relationships between BIS, BAS, and the susceptibility to making impulsive action errors and the proficiency of inhibiting interference from action impulses. Results:BIS scores correlated positively with rates of impulsive action errors, indicating that participants endorsing low BIS tendencies were much more susceptible to acting on strong motor impulses. Analyses of subgroups with high versus low BIS scores confirmed this pattern and ruled out alternative explanations in terms of group differences in speed-accuracy tradeoffs. None of the scores on the BIS or BAS scales correlated with reactive inhibitory control. Conclusions: PD participants who endorse diminished predilection toward monitoring and avoiding aversive experiences (low BIS) show much greater difficulty restraining fast, impulsive motor errors. Establishing relationships between motivational sensitivities and cognitive control processes may have important implications for treatment strategies and positive health outcomes in participants with PD, particularly those at risk for falling and driving difficulties related to impulsive reactions. (JINS, 2018, 24, 128–138)

2020 ◽  
Vol 26 (6) ◽  
pp. 333-342 ◽  
Author(s):  
Shoned Jones ◽  
Kelli M. Torsney ◽  
Lily Scourfield ◽  
Katie Berryman ◽  
Emily J. Henderson

SUMMARYHistorically, Parkinson's disease was viewed as a motor disorder and it is only in recent years that the spectrum of non-motor disorders associated with the condition has been fully recognised. There is a broad scope of neuropsychiatric manifestations, including depression, anxiety, apathy, psychosis and cognitive impairment. Patients are more predisposed to delirium, and Parkinson's disease treatments give rise to specific syndromes, including impulse control disorders, dopamine agonist withdrawal syndrome and dopamine dysregulation syndrome. This article gives a broad overview of the spectrum of these conditions, describes the association with severity of Parkinson's disease and the degree to which dopaminergic degeneration and/or treatment influence symptoms. We highlight useful assessment scales that inform diagnosis and current treatment strategies to ameliorate these troublesome symptoms, which frequently negatively affect quality of life.


Author(s):  
Hayrettin Ozan Gulcan

: Similar to other neurodegenerative diseases, Parkinson’s disease (PD) has been extensively investigated with respect to its neuropathological background and possible treatment options. Since the symptomatic outcomes are generally related to dopamine deficiency, the current treatment strategies towards PD mainly employ dopaminergic agonists as well as the compounds acting on dopamine metabolism. These drugs do not provide disease modifying properties; therefore alternative drug discovery studies focus on targets involved in the progressive neurodegenerative character of PD. This study has aimed to present the pathophysiology of PD concomitant to the representation of drugs and promising molecules displaying activity against the validated and non-validated targets of PD.


Author(s):  
Ramakrishnan Angarai Ganesan

The benefits of pranayama for positive health are well known. Even though there are many studies published on the effectiveness of pranayama, there are very few papers that actually have systematically studied the physiological mechanisms involved, causing the benefits of pranayama, especially with respect to the cardiac function. This chapter attempts to have a detailed look at the physiology behind deep breathing. The chapter also conjectures that voluntary, deep breathing with attention may have a role to play in faster recovery from surgeries and prevent or delay the onset of Alzheimer's disease, Parkinson's disease, and maybe even cancer. Extended, carefully controlled, and detailed studies are needed to prove or disprove these conjectures.


2020 ◽  
Vol 6 (1) ◽  
Author(s):  
James P. Harris ◽  
Justin C. Burrell ◽  
Laura A. Struzyna ◽  
H. Isaac Chen ◽  
Mijail D. Serruya ◽  
...  

AbstractParkinson’s disease (PD) is the second most common progressive neurodegenerative disease, affecting 1–2% of people over 65. The classic motor symptoms of PD result from selective degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNpc), resulting in a loss of their long axonal projections to the striatum. Current treatment strategies such as dopamine replacement and deep brain stimulation (DBS) can only minimize the symptoms of nigrostriatal degeneration, not directly replace the lost pathway. Regenerative medicine-based solutions are being aggressively pursued with the goal of restoring dopamine levels in the striatum, with several emerging techniques attempting to reconstruct the entire nigrostriatal pathway—a key goal to recreate feedback pathways to ensure proper dopamine regulation. Although many pharmacological, genetic, and optogenetic treatments are being developed, this article focuses on the evolution of transplant therapies for the treatment of PD, including fetal grafts, cell-based implants, and more recent tissue-engineered constructs. Attention is given to cell/tissue sources, efficacy to date, and future challenges that must be overcome to enable robust translation into clinical use. Emerging regenerative medicine therapies are being developed using neurons derived from autologous stem cells, enabling the construction of patient-specific constructs tailored to their particular extent of degeneration. In the upcoming era of restorative neurosurgery, such constructs may directly replace SNpc neurons, restore axon-based dopaminergic inputs to the striatum, and ameliorate motor deficits. These solutions may provide a transformative and scalable solution to permanently replace lost neuroanatomy and improve the lives of millions of people afflicted by PD.


2018 ◽  
Vol 9 ◽  
Author(s):  
Laure Fernandez ◽  
Raoul Huys ◽  
Johann Issartel ◽  
Jean-Philippe Azulay ◽  
Alexandre Eusebio

Sign in / Sign up

Export Citation Format

Share Document