Quantitative Valence-Loss Spectroscopy of Carbon Nanostructures

1999 ◽  
Vol 5 (S2) ◽  
pp. 690-691
Author(s):  
T. Stöeckli ◽  
Z.L. Wang ◽  
J.-M. Bonard ◽  
P. Stadelmann ◽  
A. Châtelain

Carbon tubes or spheres synthesized by arc-discharge are usually mixed with other byproducts, prohibiting direct measurements of their physical properties by the well established optical techniques because a large quantity of pure specimen is required. Electron energy-loss spectroscopy (EELS) is a unique technique that can be applied to probe the electronic structure of a single carbon tube or sphere. In this paper, the classical dielectric response theory is applied to calculate the EELS spectra acquired from a graphitic carbon sphere at various impact parameters. Graphite is an anisotropic dielectric medium whose dielectric function is described by a tensor. A graphitic carbon sphere is composed of concentric graphitic shells whose dielectric tensor in the spherical geometry, under the local response approximation, is given by (Figure 1)where are the dielectric function of graphite for an electric field perpendicular and parallel, respectively, to the c axis. In the non-relativistic approximation, the surface excitation is calculated by [1]

Carbon ◽  
2017 ◽  
Vol 120 ◽  
pp. 83-88 ◽  
Author(s):  
Sejung Kim ◽  
Youngjun Song ◽  
Michael J. Heller

Author(s):  
A. N. Gavrilov

The problem of modeling complex resource-intensive processes of plasma synthesis of carbon nanostructures (CNS) on the basis of mathematical and numerical methods of solution, focused on the use of parallel and distributed computing for processing large amounts of data, allowing to investigate the relationship and characteristics of processes to obtain an effective, cost-effective method of synthesis of CNS (fullerenes, nanotubes), is an actual theoretical and practical problem. This article deals with the problem of mathematical modeling of motion and interaction of charged particles in a multicomponent plasma based on the Boltzmann equation for the synthesis of ONS by thermal sublimation of graphite. The derivation of the collision integral is presented allowing to perform a numerical solution of the Boltzmann - Maxwell equations system with respect to the arc synthesis of CNS. The high order of particles and the number of their interactions involved simultaneously in the process of synthesis of CNS requires significant costs of machine resources and time to perform numerical calculations on the constructed model. Application of the large particle method makes it possible to reduce the amount of computing and hardware requirements without affecting the accuracy of numerical calculations. The use of parallel computing technology on the CPU and GPU with the use of Nvidia CUDA technology allows you to organize all the General-purpose calculations for the developed model based on the graphics processor of the personal computer graphics card, without the use of supercomputers or computing clusters. The results of experimental studies and numerical calculations confirming the adequacy of the developed model are presented. Obtained quantitative characteristics of the total pairwise interactions between the carbon particles and interactions with the formation of clusters of carbon with various types of ties in the plasma of the interelectrode space which are the basis of the synthesized nanostructures. The formation of carbon clusters occurs in the entire interelectrode space of the plasma with different intensity and depends on the process parameters.


2016 ◽  
Vol 32 (1) ◽  
pp. 166-173 ◽  
Author(s):  
Nazia Nafsin ◽  
Ricardo H.R. Castro

Abstract


2008 ◽  
Vol 10 (10) ◽  
pp. 1433 ◽  
Author(s):  
M. Sevilla ◽  
C. Salinas Martínez-de Lecea ◽  
T. Valdés-Solís ◽  
E. Morallón ◽  
A. B. Fuertes

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Lorenzo Hernandez-Tabares ◽  
Juan G. Darias-Gonzalez ◽  
Frank J. Chao-Mujica ◽  
Luis M. Ledo-Pereda ◽  
Manuel Antuch ◽  
...  

Many papers, in which the submerged arc discharge (SAD) method in nanoparticle synthesis was used, reported similar operating parameters, but different electrode erosion rate values, different yields and purities of the obtained nanostructures, and a different sort of contaminants present in the synthesis. Analyzing these articles, we found insufficient attention to ensure the arc power stability, which is a key factor guaranteeing the product homogeneity and quality. This paper presents an analysis of different control strategies, remarks their advantages and drawbacks, and proposes the most appropriate technique to be used in SAD. The most appropriate technique is proposed from the SAD stabilization method analysis.


2018 ◽  
Vol 2018 ◽  
pp. 1-10
Author(s):  
David Saucedo-Jimenez ◽  
Isaac Medina-Sanchez ◽  
Carlos Couder Castañeda

The aim of this article was to report the carbon nanofoam synthesis by a new method and a new catalytic mixture. Using the pulsed electric arc discharge method, carbon nanofoam was synthesized. The synthesis was carried out in a controlled atmosphere at 200 torr of hydrogen pressure. The pulsed electric arc discharge was established between two graphite electrodes with 22.8 kVA of power and 150 A DC current; the cathode was relatively motionless and was made of a pure carbon rod of 6 mm diameter, and the spinner anode was a pure carbon disc spinning at 600 rpm; over the disc was an annular cavity where the new catalytic mixture of 93.84/2.56/1.43/0.69/1.48 of C/Ni/Fe/Co/S molar fraction was deposited in a geometrically fixed way by 8 catalytic mixture blocks and 8 empty spaces, and the discharge frequency was 80 Hz. After the synthesis was made, the resulting products were deposited on the electrodes, proving that our method can synthesize different carbon nanostructures easily and at low cost.


2011 ◽  
Vol 15 ◽  
pp. 57-67 ◽  
Author(s):  
V. Eskizeybek ◽  
E.S. Karabulut ◽  
A. Avci

The synthesis of multi-walled carbon nanotubes MWCNTs, carbon nanoshells, carbon nanoonions (CNOs), different types of carbon nanostructures and CaCO3 nanoparticles were performed using an arc-discharge method in mineral water. The structures of the synthesized nanostructures were visualized by scanning electron microscopy and transmission electron microscopy (TEM). Furthermore, ultraviolet-visible spectroscopy and thermo-gravimetric analysis (TGA) were used to determine the optical and thermal properties of the synthesized nanostructures. The TEM observations revealed that as-synthesized MWCNTs and CNOs have nominal diameters in the range of 10-20 nm and 30-50 nm, respectively. The CaCO3 nanoparticles were directly synthesized using arc discharge due to the presence of Ca minerals in the mineral water. The production rate of synthesized MWCNTs decreased when the arc current increased above 50 A, and the production rate of different nanoparticles increased with increasing arc current. The thermal-oxidative stability of the carbon nanostructures using TGA was explored separately under argon and oxygen atmospheres.


Sign in / Sign up

Export Citation Format

Share Document