scholarly journals Quantification and Sensible Correction for Energy-Loss- and Thickness-Dependent Contrast Complications in Atomic-Scale Electron Energy-Loss Spectroscopy

2016 ◽  
Vol 22 (S3) ◽  
pp. 886-887
Author(s):  
Huolin L. Xin ◽  
Haiyan Tan ◽  
Christian Dwyer ◽  
Ye Zhu
Author(s):  
N. D. Browning ◽  
M. M. McGibbon ◽  
M. F. Chisholm ◽  
S. J. Pennycook

The recent development of the Z-contrast imaging technique for the VG HB501 UX dedicated STEM, has added a high-resolution imaging facility to a microscope used mainly for microanalysis. This imaging technique not only provides a high-resolution reference image, but as it can be performed simultaneously with electron energy loss spectroscopy (EELS), can be used to position the electron probe at the atomic scale. The spatial resolution of both the image and the energy loss spectrum can be identical, and in principle limited only by the 2.2 Å probe size of the microscope. There now exists, therefore, the possibility to perform chemical analysis of materials on the scale of single atomic columns or planes.In order to achieve atomic resolution energy loss spectroscopy, the range over which a fast electron can cause a particular excitation event, must be less than the interatomic spacing. This range is described classically by the impact parameter, b, which ranges from ~10 Å for the low loss region of the spectrum to <1Å for the core losses.


2018 ◽  
Vol 24 (3) ◽  
pp. 214-220 ◽  
Author(s):  
Fernando C. Castro ◽  
Vinayak P. Dravid

AbstractCutting-edge research on materials for lithium ion batteries regularly focuses on nanoscale and atomic-scale phenomena. Electron energy-loss spectroscopy (EELS) is one of the most powerful ways of characterizing composition and aspects of the electronic structure of battery materials, particularly lithium and the transition metal mixed oxides found in the electrodes. However, the characteristic EELS signal from battery materials is challenging to analyze when there is strong overlap of spectral features, poor signal-to-background ratios, or thicker and uneven sample areas. A potential alternative or complementary approach comes from utilizing the valence EELS features (<20 eV loss) of battery materials. For example, the valence EELS features in LiCoO2 maintain higher jump ratios than the Li–K edge, most notably when spectra are collected with minimal acquisition times or from thick sample regions. EELS maps of these valence features give comparable results to the Li–K edge EELS maps of LiCoO2. With some spectral processing, the valence EELS maps more accurately highlight the morphology and distribution of LiCoO2 than the Li–K edge maps, especially in thicker sample regions. This approach is beneficial for cases where sample thickness or beam sensitivity limit EELS analysis, and could be used to minimize electron dosage and sample damage or contamination.


2018 ◽  
Vol 122 (22) ◽  
pp. 12047-12051 ◽  
Author(s):  
Lunet E. Luna ◽  
David Gardner ◽  
Velimir Radmilovic ◽  
Roya Maboudian ◽  
Carlo Carraro

1993 ◽  
Vol 319 ◽  
Author(s):  
M.M. Mcgibbon ◽  
N.D. Browning ◽  
M.F. Chisholm ◽  
S.J. Pennycook ◽  
V. Ravikumar ◽  
...  

AbstractThe macroscopic properties of many materials are controlled by the structure and chemistry at grain boundaries. A basic understanding of the structure-property relationship requires a technique which probes both composition and chemical bonding on an atomic scale. The high-resolution Z-contrast imaging technique in the scanning transmission electron microscope (STEM) forms an incoherent image in which changes in atomic structure and composition can be interpreted intuitively. This direct image allows the electron probe to be positioned over individual atomic columns for parallel detection electron energy loss spectroscopy (EELS) at a spatial resolution approaching 0.22nm. In this paper we have combined the structural information available in the Z-contrast images with the bonding information obtained from the fine structure within the EELS edges to determine the grain boundary structure in a SrTiO3 bicrystal.


1994 ◽  
Vol 341 ◽  
Author(s):  
M. M. McGibbon ◽  
N. D. Browning ◽  
M. F. Chisholm ◽  
A. J. McGibbon ◽  
S. J. Pennycook ◽  
...  

AbstractThe macroscopic properties of many materials are controlled by the structure and chemistry at grain boundaries. A basic understanding of the structure-property relationship requires a technique which probes both composition and chemical bonding on an atomic scale. High-resolution Z-contrast imaging in the scanning transmission electron microscope (STEM) forms an incoherent image in which changes in atomic structure and composition across an interface can be interpreted directly without the need for preconceived atomic structure models (1). Since the Z-contrast image is formed by electrons scattered through high angles, parallel detection electron energy loss spectroscopy (PEELS) can be used simultaneously to provide complementary chemical information on an atomic scale (2). The fine structure in the PEEL spectra can be used to investigate the local electronic structure and the nature of the bonding across the interface (3). In this paper we use the complimentary techniques of high resolution Zcontrast imaging and PEELS to investigate the atomic structure and chemistry of a 25° symmetric tilt boundary in a bicrystal of the electroceramic SrTiO3.


1997 ◽  
Vol 3 (S2) ◽  
pp. 959-960
Author(s):  
P. Rez ◽  
J.M. Maclaren

The analysis of near edge structure on inner shell ionisation edges in electron energy loss spectroscopy (EELS) can lead to new insights on the nature of bonding on an atomic scale. To fully understand the origins of spectral features it is necessary to calculate the near edge structure from a suitable theoretical model . Many of the previously published theories are based on multiple scattering of the ejected electron in a cluster of atoms surrounding the site of the excitation. The techniques used for the selection of scattering paths account for most of the differences between the various theories. In the XANES method the atoms in the vicinity of the excited atom are assigned to coordination shells and a separation is made between scattering within a given shell (intrashell) and scattering between shells (intershell). The FEFF method selects paths up to a given maximum length according to the number of scatterings and estimated amplitude.


2001 ◽  
Vol 703 ◽  
Author(s):  
Y. Ito ◽  
Y Lei ◽  
N.D. Browning ◽  
T.J. Mazanec

ABSTRACTGd3+ doped Ce oxides are a major candidate for use as the electrolyte in solid oxide fuel cells operating at ∼500 °C. Here, the effect of the atomic structure on the local electronic properties, i.e. oxygen coordination and cation valence, at grain boundaries in the fluorite structured Gd0.2Ce0.8O2-x ceramic electrolyte is investigated by a combination of atomic resolution Z-contrast imaging and electron energy loss spectroscopy (EELS) in the scanning transmission electron microscope (STEM). In particular, EELS analyses from grain boundaries reveals a complex interaction between segregation of the dopant (Gd3+), oxygen vacancies and the valence state of Ce. These results are similar to observations from fluorite-structured Yttria-Stabilized Zirconium (YSZ) bicrystal grain boundaries.


Sign in / Sign up

Export Citation Format

Share Document