scholarly journals Electron Dose Management for High Angle Annular Dark Field Scanning Transmission Electron Microscope Tomography of Beam Sensitive Materials

2016 ◽  
Vol 22 (S3) ◽  
pp. 1294-1295
Author(s):  
Frédéric Voisard ◽  
Hendrix Demers ◽  
Michel Trudeau ◽  
George P. Demopoulos ◽  
Raynald Gauvin ◽  
...  
Author(s):  
E. J. Kirkland ◽  
R. F. Loane ◽  
J. Silcox

The multislice method (e.g. Goodman and Moodie) of simulating bright field conventional transmission electron microscope (BF-CTEM) images of crystalline specimens can be extended to simulation of scanning transmission electron microscope (STEM) images of similar specimens in the annular dark field (ADF) mode. According to the reciprocity theorem (Pogany and Turner and Cowley) BF-CTEM would be equivalent to BF STEM with a point detector. Such a detector (STEM) however would yield an exceedingly small signal to noise ratio. Thus, STEM has found more use in the ADF mode (e.g. Crewe et al.) exploiting the large contrast arising from heavy atoms. In BF imaging (CTEM and STEM) the constrast is roughly proportional to the scattering amplitude f α Z3/4 whereas in DF (CTEM and STEM) imaging it is roughly proportional to the scattering cross σ α Z3/2 where Z is atomic number, a form that is advantageous foatom discrimination.


1999 ◽  
Vol 589 ◽  
Author(s):  
T. Akita ◽  
K. Tanaka ◽  
S. Tsubota ◽  
M. Haruta

AbstractHRTEM(High-Resolution Transmission Electron Microscope), HAADF-STEM (High Angle Annular Dark Field Scanning Transmission Electron Microscope) and EELS(Electron Energy Loss Spectroscopy) techniques were applied for the characterization of Au/TiO2 catalysts. HAADFSTEM provides precise size distributions for Au particles smaller than ∼2nm in diameter. It was observed that many small particles under 2nm were supported on anatase TiO2 having a large surface area. The HAADF-STEM method was examined as a way to measure the shape of Au particles. EELS measurements were also used to examine the interface between Au and TiO2 support to study electronic structure effects.


2006 ◽  
Vol 982 ◽  
Author(s):  
X. Wu ◽  
M.D. Robertson ◽  
J.A. Gupta ◽  
J.-M. Baribeau ◽  
J.C. Bennett ◽  
...  

ABSTRACTThe annular dark field (ADF) image contrast of a 0.92% tensile strained GaN0.045As0.955 layer on GaAs substrate was studied with a scanning transmission electron microscope (STEM) as a function of ADF detector inner semi-angles ranging from 28 mrad to 90 mrad. The GaN0.045As0.955 layers were brighter than the surrounding GaAs for the values of ADF detector semiangle up to 65 mrad, and the measured contrast decreased with increasing ADF detector inner semi-angle. For a 37 nm thick specimen, the GaN0.045As0.955 intensity is about 13% higher than that of GaAs in the 28 mrad ADF detector inner semi-angle. Multislice simulations show that the displacement around substitutional N atoms plays an important role in the observed ADF-STEM contrast, while the contribution to the contrast due to misfit strain between GaN0.045As0.955 and GaAs is small.


Author(s):  
M. G. R. Thomson

The variation of contrast and signal to noise ratio with change in detector solid angle in the high resolution scanning transmission electron microscope was discussed in an earlier paper. In that paper the conclusions were that the most favourable conditions for the imaging of isolated single heavy atoms were, using the notation in figure 1, either bright field phase contrast with β0⋍0.5 α0, or dark field with an annular detector subtending an angle between ao and effectively π/2.The microscope is represented simply by the model illustrated in figure 1, and the objective lens is characterised by its coefficient of spherical aberration Cs. All the results for the Scanning Transmission Electron Microscope (STEM) may with care be applied to the Conventional Electron Microscope (CEM). The object atom is represented as detailed in reference 2, except that ϕ(θ) is taken to be the constant ϕ(0) to simplify the integration. This is reasonable for θ ≤ 0.1 θ0, where 60 is the screening angle.


2017 ◽  
Vol 7 ◽  
pp. 184798041770717 ◽  
Author(s):  
Anna D Dobrzańska-Danikiewicz ◽  
Weronika Wolany ◽  
Dariusz Łukowiec ◽  
Karolina Jurkiewicz ◽  
Paweł Niedziałkowski

The purpose of the article is to discuss the process of oxidation of carbon nanotubes subsequently subjected to the process of decoration with rhenium nanoparticles. The influence of functionalization in an oxidizing medium is presented and the results of investigations using Raman spectroscopy and infrared spectroscopy are discussed. Multiwalled carbon nanotubes rhenium-type nanocomposites with the weight percentage of 10%, 20% and 30% of rhenium are also presented in the article. The structural components of such nanocomposites are carbon nanotubes decorated with rhenium nanoparticles. Microscopic examinations under transmission electron microscope and scanning transmission electron microscope using the bright and dark field confirm that nanocomposites containing about 20% of rhenium have the most homogenous structure.


Sign in / Sign up

Export Citation Format

Share Document