scholarly journals Single-molecule Tracking Reveals Multi-state Dynamics of a Bacterial DNA Methyltransferase in Vivo

2020 ◽  
Vol 26 (S2) ◽  
pp. 1590-1591
Author(s):  
Ziyuan Chen ◽  
Taylor Nye ◽  
Lyle Simmons ◽  
Julie Biteen
2016 ◽  
Vol 44 (21) ◽  
pp. e160-e160 ◽  
Author(s):  
David A Ball ◽  
Gunjan D Mehta ◽  
Ronit Salomon-Kent ◽  
Davide Mazza ◽  
Tatsuya Morisaki ◽  
...  

Abstract In vivo single molecule tracking has recently developed into a powerful technique for measuring and understanding the transient interactions of transcription factors (TF) with their chromatin response elements. However, this method still lacks a solid foundation for distinguishing between specific and non-specific interactions. To address this issue, we took advantage of the power of molecular genetics of yeast. Yeast TF Ace1p has only five specific sites in the genome and thus serves as a benchmark to distinguish specific from non-specific binding. Here, we show that the estimated residence time of the short-residence molecules is essentially the same for Hht1p, Ace1p and Hsf1p, equaling 0.12–0.32 s. These three DNA-binding proteins are very different in their structure, function and intracellular concentration. This suggests that (i) short-residence molecules are bound to DNA non-specifically, and (ii) that non-specific binding shares common characteristics between vastly different DNA-bound proteins and thus may have a common underlying mechanism. We develop new and robust procedure for evaluation of adverse effects of labeling, and new quantitative analysis procedures that significantly improve residence time measurements by accounting for fluorophore blinking. Our results provide a framework for the reliable performance and analysis of single molecule TF experiments in yeast.


2020 ◽  
Vol 118 (3) ◽  
pp. 616a
Author(s):  
Yuan-I Chen ◽  
Yin-Jui Chang ◽  
Trung D. Nguyen ◽  
Cong Liu ◽  
Stephanie Phillion ◽  
...  

2016 ◽  
Vol 7 (1) ◽  
Author(s):  
Juan A. Varela ◽  
Julien P. Dupuis ◽  
Laetitia Etchepare ◽  
Agnès Espana ◽  
Laurent Cognet ◽  
...  

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Thomas J Etheridge ◽  
Desiree Villahermosa ◽  
Eduard Campillo-Funollet ◽  
Alex David Herbert ◽  
Anja Irmisch ◽  
...  

The essential Smc5/6 complex is required in response to replication stress and is best known for ensuring the fidelity of homologous recombination. Using single-molecule tracking in live fission yeast to investigate Smc5/6 chromatin association, we show that Smc5/6 is chromatin associated in unchallenged cells and this depends on the non-SMC protein Nse6. We define a minimum of two Nse6-dependent sub-pathways, one of which requires the BRCT-domain protein Brc1. Using defined mutants in genes encoding the core Smc5/6 complex subunits, we show that the Nse3 double-stranded DNA binding activity and the arginine fingers of the two Smc5/6 ATPase binding sites are critical for chromatin association. Interestingly, disrupting the single-stranded DNA (ssDNA) binding activity at the hinge region does not prevent chromatin association but leads to elevated levels of gross chromosomal rearrangements during replication restart. This is consistent with a downstream function for ssDNA binding in regulating homologous recombination.


2019 ◽  
Vol 116 (3) ◽  
pp. 175a
Author(s):  
Janet Y. Sheung ◽  
Pinghua Ge ◽  
Sung Jun Lim ◽  
Sang Hak Lee ◽  
Andrew Smith ◽  
...  

Author(s):  
Adekunle T. Bademosi ◽  
Elsa Lauwers ◽  
Rumelo Amor ◽  
Patrik Verstreken ◽  
Bruno van Swinderen ◽  
...  

2016 ◽  
Vol 110 (3) ◽  
pp. 351a
Author(s):  
Ivan Volkov ◽  
Javier Aguirre ◽  
Martin Lindén ◽  
Johan Elf ◽  
Magnus Johansson

mSphere ◽  
2020 ◽  
Vol 5 (5) ◽  
Author(s):  
Sonja Schibany ◽  
Rebecca Hinrichs ◽  
Rogelio Hernández-Tamayo ◽  
Peter L. Graumann

ABSTRACT Although DNA-compacting proteins have been extensively characterized in vitro, knowledge of their DNA binding dynamics in vivo is greatly lacking. We have employed single-molecule tracking to characterize the motion of the three major chromosome compaction factors in Bacillus subtilis, Smc (structural maintenance of chromosomes) proteins, topoisomerase DNA gyrase, and histone-like protein HBsu. We show that these three proteins display strikingly different patterns of interaction with DNA; while Smc displays two mobility fractions, one static and one moving through the chromosome in a constrained manner, gyrase operates as a single slow-mobility fraction, suggesting that all gyrase molecules are catalytically actively engaged in DNA binding. Conversely, bacterial histone-like protein HBsu moves through the nucleoid as a larger, slow-mobility fraction and a smaller, high-mobility fraction, with both fractions having relatively short dwell times. Turnover within the SMC complex that makes up the static fraction is shown to be important for its function in chromosome compaction. Our report reveals that chromosome compaction in bacteria can occur via fast, transient interactions in vivo, avoiding clashes with RNA and DNA polymerases. IMPORTANCE All types of cells need to compact their chromosomes containing their genomic information several-thousand-fold in order to fit into the cell. In eukaryotes, histones achieve a major degree of compaction and bind very tightly to DNA such that they need to be actively removed to allow access of polymerases to the DNA. Bacteria have evolved a basic, highly dynamic system of DNA compaction, accommodating rapid adaptability to changes in environmental conditions. We show that the Bacillus subtilis histone-like protein HBsu exchanges on DNA on a millisecond scale and moves through the entire nucleoid containing the genome as a slow-mobility fraction and a dynamic fraction, both having short dwell times. Thus, HBsu achieves compaction via short and transient DNA binding, thereby allowing rapid access of DNA replication or transcription factors to DNA. Topoisomerase gyrase and B. subtilis Smc show different interactions with DNA in vivo, displaying continuous loading or unloading from DNA, or using two fractions, one moving through the genome and one statically bound on a time scale of minutes, respectively, revealing three different modes of DNA compaction in vivo.


2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Thomas C. Rösch ◽  
Stephan Altenburger ◽  
Luis Oviedo-Bocanegra ◽  
Miriam Pediaditakis ◽  
Nina El Najjar ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document