scholarly journals Interpolation problem for l1 and a uniform algebra

2002 ◽  
Vol 72 (1) ◽  
pp. 1-12
Author(s):  
Takahiko Nakazi

AbstractLet A be a uniform algebra and M(A) the maximal ideal space of A. A sequence {an} in M(A) is called l1-interpolating if for every sequence (αn) in l1 there exists a function f in A such that f (an) = αn for all n. In this paper, an l1-interpolating sequence is studied for an arbitrary uniform algebra. For some special uniform algebras, an l1-interpolating sequence is equivalent to a familiar l-interpolating sequence. However, in general these two interpolating sequences may be different from each other.

1975 ◽  
Vol 27 (1) ◽  
pp. 121-132
Author(s):  
B. V. Limaye ◽  
R. R. Simha

Let U be a complex uniform algebra, Z and dZ its maximal ideal space and its Šilov boundary, respectively. The Dirichlet (respectively Arens-Singer) deficiency of U is the codimension in CR(∂Z) of the closure of Re U (respectively of the real linear span of log|U-1|). Algebras with finite Dirichlet deficiency have many interesting properties, especially when the Arens-Singer deficiency is zero. (See, e.g. [5].) By a real uniform algebra we mean a real commutative Banach algebra A with identity 1, and norm ‖ ‖ such that ‖f2‖ = ‖f‖2 for each fin A


1999 ◽  
Vol 51 (1) ◽  
pp. 147-163 ◽  
Author(s):  
Daniel Suárez

AbstractLet m be a point of the maximal ideal space of H∞ with nontrivial Gleason part P(m). If Lm : D → P(m) is the Hoffman map, we show that H∞ ° Lm is a closed subalgebra of H∞. We characterize the points m for which Lm is a homeomorphism in terms of interpolating sequences, and we show that in this case H∞ ° Lm coincides with H∞. Also, if Im is the ideal of functions in H∞ that identically vanish on P(m), we estimate the distance of any f ϵ H∞ to Im.


2019 ◽  
pp. 1-18
Author(s):  
Alexander J. Izzo ◽  
Dimitris Papathanasiou

Abstract We strengthen, in various directions, the theorem of Garnett that every $\unicode[STIX]{x1D70E}$ -compact, completely regular space $X$ occurs as a Gleason part for some uniform algebra. In particular, we show that the uniform algebra can always be chosen so that its maximal ideal space contains no analytic discs. We show that when the space $X$ is metrizable, the uniform algebra can be chosen so that its maximal ideal space is metrizable as well. We also show that for every locally compact subspace $X$ of a Euclidean space, there is a compact set $K$ in some $\mathbb{C}^{N}$ so that $\widehat{K}\backslash K$ contains a Gleason part homeomorphic to  $X$ , and $\widehat{K}$ contains no analytic discs.


1982 ◽  
Vol 34 (3) ◽  
pp. 673-685
Author(s):  
Donna Kumagai

Let A be a uniform algebra on a compact Hausdorff space X. The spectrum, or the maximal ideal space, MA, of A is given byWe define the measure spectrum, SA, of A bySA is the set of all representing measures on X for all Φ ∈ MA. (A representing measure for Φ ∈ MA is a probability measure μ on X satisfyingThe concept of representing measure continues to be an effective tool in the study of uniform algebras. See for example [12, Chapters 2 and 3], [5, pp. 15-22] and [3]. Most of the known results on the subject of representing measures, however, concern measures associated with a single homomorphism.


2012 ◽  
Vol 2012 ◽  
pp. 1-15 ◽  
Author(s):  
Raymond Mortini ◽  
Rudolf Rupp

We determine, via classroom proofs, the maximal ideal space, the Bass stable rank as well as the topological and dense stable rank of the uniform closure of all complex-valued functions continuously differentiable on neighborhoods of a compact planar set and holomorphic in the interior of . In this spirit, we also give elementary approaches to the calculation of these stable ranks for some classical function algebras on .


1982 ◽  
Vol 92 (3) ◽  
pp. 437-449
Author(s):  
John R. Shackell

Let A be a uniform algebra with maximal ideal space M and Shilov boundary Σ; see (8), (18) or (21) for the basic definitions. If Σ is different from M, there is often analytic structure in M/Σ. However this is not always the case, as is shown by the classical example of Stolzenberg in (16). Hence much of the considerable amount of research on this topic has been devoted to finding conditions which ensure the presence of analytic structure in M/Σ One particularly fruitful line of development has been concerned with one-dimensional analytic structure; in particular we have in mind the classical theorem of Bishop (see (2), chapter 11) and the more recent result of Aupetit and Wermer(2).


1978 ◽  
Vol 30 (4) ◽  
pp. 863-871
Author(s):  
Eric P. Kronstadt

Let Ω C Cn be a bounded domain; let H∞ (Ω) be the uniform algebra of bounded analytic functions on 12; and let ∑ (Ω) be the maximal ideal space of H∞ (Ω). In the weak-* topology of (H∞ (Ω))*, ∑ (Ω) is a compact Hausdorf space in which Ω is embedded in a natural fashion, so that to every g ∈ H∞ (Ω) there corresponds the Gelfand transform ĝ ∈ C(∑ (Ω)); ĝ|Ω = g.


Sign in / Sign up

Export Citation Format

Share Document