scholarly journals The H-function transform

1970 ◽  
Vol 11 (2) ◽  
pp. 142-148 ◽  
Author(s):  
K. C. Gupta ◽  
P. K. Mittal

Here we introduce a new integral transform whose kernel is the H-function. Since most of the important functions occurring in Applied Mathematics and Physics are special cases of the H-function, various integral transforms involving these functions as kernels follow as special cases of our transform. We mention some of them here and observe that a study of this transform gives general and useful results which serve as key formulae for several important integral transforms viz. Laplace transform, Hankel transform. Stieltjes transform and the various generalizations of these transforms. In the end we establish an inversion formula for the new transform and point out its special cases which are generalizations of results found recently.

2021 ◽  
Vol 21 (2) ◽  
pp. 429-436
Author(s):  
SEEMA KABRA ◽  
HARISH NAGAR

In this present work we derived integral transforms such as Euler transform, Laplace transform, and Whittaker transform of K4-function. The results are given in generalized Wright function. Some special cases of the main result are also presented here with new and interesting results. We further extended integral transforms derived here in terms of Gauss Hypergeometric function.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Junesang Choi ◽  
Praveen Agarwal

A remarkably large number of integral transforms and fractional integral formulas involving various special functions have been investigated by many authors. Very recently, Agarwal gave some integral transforms and fractional integral formulas involving theFp(α,β)(·). In this sequel, using the same technique, we establish certain integral transforms and fractional integral formulas for the generalized Gauss hypergeometric functionsFp(α,β,m)(·). Some interesting special cases of our main results are also considered.


2008 ◽  
Vol 39 (4) ◽  
pp. 325-334 ◽  
Author(s):  
R. Aghalary ◽  
A. Ebadian ◽  
S. Shams

Let $\mathcal{A}$ denote the class of normalized analytic functions in the unit disc $ U $ and $ P_{\gamma} (\alpha, \beta) $ consists of $ f \in \mathcal{A} $ so that$ \exists ~\eta \in \mathbb{R}, \quad \Re \bigg \{e^{i\eta} \bigg [(1-\gamma) \Big (\frac{f(z)}{z}\Big )^{\alpha}+ \gamma \frac{zf'(z)}{f(z)} \Big (\frac{f(z)}{z}\Big )^{\alpha} - \beta\bigg ]\bigg \} > 0. $ In the present paper we shall investigate the integral transform$ V_{\lambda, \alpha}(f)(z) = \bigg \{\int_{0}^{1} \lambda(t) \Big (\frac{f(tz)}{t}\Big )^{\alpha}dt\bigg \}^{\frac{1}{\alpha}}, $ where $ \lambda $ is a non-negative real valued function normalized by $ \int_{0}^{1}\lambda(t) dt=1 $. Actually we aim to find conditions on the parameters $ \alpha, \beta, \gamma, \beta_{1}, \gamma_{1} $ such that $ V_{\lambda, \alpha}(f) $ maps $ P_{\gamma}(\alpha, \beta) $ into $ P_{\gamma_{1}}(\alpha, \beta_{1}) $. As special cases, we study various choices of $ \lambda(t) $, related to classical integral transforms.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Manish Kumar Bansal ◽  
Devendra Kumar

Abstract Recently, Srivastava, Saxena and Parmar [H. M. Srivastava, R. K. Saxena and R. K. Parmar, Some families of the incomplete H-functions and the incomplete H ¯ {\overline{H}} -functions and associated integral transforms and operators of fractional calculus with applications, Russ. J. Math. Phys. 25 2018, 1, 116–138] suggested incomplete H-functions (IHF) that paved the way to a natural extension and decomposition of H-function and other connected functions as well as to some important closed-form portrayals of definite and improper integrals of different kinds of special functions of physical sciences. In this article, our key aim is to present some new integral transform (Jacobi transform, Gegenbauer transform, Legendre transform and 𝖯 δ {\mathsf{P}_{\delta}} -transform) of this family of incomplete H-functions. Further, we give several interesting new and known results which are special cases our key results.


1964 ◽  
Vol 14 (1) ◽  
pp. 33-40 ◽  
Author(s):  
Jet Wimp

In this paper we discuss a new class of integral transforms and their inversion formula. The kernel in the transform is a G-function (for a treatment of this function, see ((1), 5.3) and integration is performed with respect to the argument of that function. In the inversion formula, the kernel is likewise a G-function, but there integration is performed with respect to a parameter. Known special cases of our results are the Kontorovitch-Lebedev transform pair ((2), v. 2; (3))and the generalised Mehler transform pair (7)These transforms are used in solving certain boundary value problems of the wave or heat conduction equation involving wedge or conically-shaped boundaries, and are extensively tabulated in (6).


Filomat ◽  
2017 ◽  
Vol 31 (1) ◽  
pp. 125-140 ◽  
Author(s):  
Rekha Srivastava ◽  
Ritu Agarwal ◽  
Sonal Jain

Recently, Srivastava et al. [Integral Transforms Spec. Funct. 23 (2012), 659-683] introduced the incomplete Pochhammer symbols that led to a natural generalization and decomposition of a class of hypergeometric and other related functions as well as to certain potentially useful closed-form representations of definite and improper integrals of various special functions of applied mathematics and mathematical physics. In the present paper, our aim is to establish several formulas involving integral transforms and fractional derivatives of this family of incomplete hypergeometric functions. As corollaries and consequences, many interesting results are shown to follow from our main results.


Author(s):  
I. Ali ◽  
S. Kalla

AbstractWe introduce a generalized form of the Hankel transform, and study some of its properties. A partial differential equation associated with the problem of transport of a heavy pollutant (dust) from the ground level sources within the framework of the diffusion theory is treated by this integral transform. The pollutant concentration is expressed in terms of a given flux of dust from the ground surface to the atmosphere. Some special cases are derived.


1985 ◽  
Vol 37 (1) ◽  
pp. 84-106 ◽  
Author(s):  
R. S. Pathak

The classical Hankel transform of a conventional function ϕ on (0, ∞) defined formally bywas extended by Zemanian [21-23] to certain generalized functions of one dimension. Koh [9, 10] extended the work of [21] to n-dimensions, and that of [22] to arbitrary real values of μ. Motivated from the work of Gelfand and Shilov [6], Lee [11] introduced spaces of type Hμ and studied their Hankel transforms. The results of Lee [11] and Zemanian [21] are special cases of recent results obtained by the author and Pandey [14]. The aforesaid extensions are accomplished by using the so-called adjoint method of extending integral transforms to generalized functions. Dube and Pandey [2], Pathak and Pandey [15, 16] applied a more direct method, the so-called kernel method, for extending the Hankel and other related transforms.


1992 ◽  
Vol 07 (supp01b) ◽  
pp. 1047-1071 ◽  
Author(s):  
Anton ZORICH

There exists the wonderful integral transform on complex semisimple Lie groups, which assigns to a function on the group the set of its integrals over "generalized horospheres" — some specific submanifolds of the Lie group. The local inversion formula for this integral transform, discovered in 50's for [Formula: see text] by Gel'fand and Graev, made it possible to decompose the regular representation on [Formula: see text] into irreducible ones. In case of real semisimple Lie group the situation becomes more complicated, and usually there is no reasonable analogous integral transform at all. Nevertheless, in the present paper we succeed to define the integral transforms on the Lorentz group and some other real semisimple Lie groups, which are in a sense analogous to the integration over "horospheres". We obtain the inversion formulas for these integral transforms.


1961 ◽  
Vol 57 (4) ◽  
pp. 778-781
Author(s):  
Afzal Ahmad ◽  
V. Lakshmikanth

Following Hardy and Titchmarsh(1) a function f(x) is said to be self-reciprocal if it satisfies the Fourier-Bessel integral transformwhere Jp(x) is a Bessel function of order P ≥ –½. This integral is denoted by Rp. The special cases P ½ and P ½, we denote by Rs and Rc, respectively.


Sign in / Sign up

Export Citation Format

Share Document