scholarly journals The isometries of Hp(K)

Author(s):  
Pei-Kee Lin

AbstractLet 1 ≤ p < ∞, p ≠ 2 and let K be any complex Hilbert space. We prove that every isometry T of Hp(K) onto itself is of the form , where U ia a unitary operator on K and φ is a conformal map of the unit disc onto itself.

1979 ◽  
Vol 31 (5) ◽  
pp. 1012-1016 ◽  
Author(s):  
John Phillips ◽  
Iain Raeburn

Let A and B be C*-algebras acting on a Hilbert space H, and letwhere A1 is the unit ball in A and d(a, B1) denotes the distance of a from B1. We shall consider the following problem: if ‖A – B‖ is sufficiently small, does it follow that there is a unitary operator u such that uAu* = B?Such questions were first considered by Kadison and Kastler in [9], and have received considerable attention. In particular in the case where A is an approximately finite-dimensional (or hyperfinite) von Neumann algebra, the question has an affirmative answer (cf [3], [8], [12]). We shall show that in the case where A and B are approximately finite-dimensional C*-algebras (AF-algebras) the problem also has a positive answer.


1969 ◽  
Vol 21 ◽  
pp. 1421-1426 ◽  
Author(s):  
Heydar Radjavi

The main result of this paper is that every normal operator on an infinitedimensional (complex) Hilbert space ℋ is the product of four self-adjoint operators; our Theorem 4 is an actually stronger result. A large class of normal operators will be given which cannot be expressed as the product of three self-adjoint operators.This work was motivated by a well-known resul t of Halmos and Kakutani (3) that every unitary operator on ℋ is the product of four symmetries, i.e., operators that are self-adjoint and unitary.1. By “operator” we shall mean bounded linear operator. The space ℋ will be infinite-dimensional (separable or non-separable) unless otherwise specified. We shall denote the class of self-adjoint operators on ℋ by and that of symmetries by .


1977 ◽  
Vol 29 (2) ◽  
pp. 299-306 ◽  
Author(s):  
Fletcher D. Wicker

Anderson, Clunie and Pommerenke defined and studied the family of Bloch functions on the unit disc (see [1]). This family strictly contains the space of bounded analytic functions. However, all Bloch functions are normal and therefore enjoy the “nice” properties of normal functions. The importance of the Bloch function concept is the combination of their richness as a family and their “nice” behavior.


1986 ◽  
Vol 28 (1) ◽  
pp. 25-30 ◽  
Author(s):  
T. Mazur ◽  
M. Skwarczyński

The Hilbert space methods in the theory of biholomorphic mappings were applied and developed by S. Bergman [1, 2]. In this approach the central role is played by the Hilbert space L2H(D) consisting of all functions which are square integrable and holomorphic in a domain D ⊂ ℂN. A biholomorphic mapping φ:D ⃗ G induces the unitary mapping Uφ:L2H(G) ⃗ L2H(D) defined by the formulaHere ∂φ/∂z denotes the complex Jacobian of φ. The mapping Uϕ is useful, since it permits to replace a problem for D by a problem for its biholomorphic image G (see for example [11], [13]). When ϕ is an automorphism of D we obtain a unitary operator Uϕ on L2H(D).


1972 ◽  
Vol 15 (2) ◽  
pp. 215-217 ◽  
Author(s):  
I. Istrǎțescu

In [6] B. Sz.-Nagy has proved that every operator on a Hilbert space such that1is similar to a unitary operator.The following problem is an extension of this result: If T and S are two operators such that1.sup {‖Tn‖, ‖Sn‖}<∞ (n = 0, ±1, ±2,…)2.TS = STthen there exists a selfadjoint operator Q such that QTQ-1, QSQ-1 are unitary operators?Also, in [7] B. Sz.-Nagy has proved that every compact operator T such thatsup ‖Tn‖<∞ (n = 1, 2, 3,…)is similar to a contraction.


2015 ◽  
Vol 13 (03) ◽  
pp. 1550027
Author(s):  
Li Wang ◽  
Jinchuan Hou ◽  
Kan He

Sub- and super-fidelity describe respectively the lower and super bound of fidelity of quantum states. In this paper, we obtain several properties of sub- and super-fidelity for both finite- and infinite-dimensional quantum systems. Furthermore, let H be a separable complex Hilbert space and ϕ : 𝒮(H) → 𝒮(H) a map, where 𝒮(H) denotes the convex set of all states on H. We show that, if dim H < ∞, or, if dim H = ∞ and ϕ is surjective, then the following statements are equivalent: (1) ϕ preserves the super-fidelity; (2) ϕ preserves the fidelity; (3) ϕ preserves the sub-fidelity; (4) there exists a unitary or an anti-unitary operator U on H such that ϕ(ρ) = UρU† for all ρ ∈ 𝒮(H).


1982 ◽  
Vol 23 (1) ◽  
pp. 91-95 ◽  
Author(s):  
Ernst Albrecht

Let H be a complex Hilbert space and denote by B(H) the Banach algebra of all bounded linear operators on H. In [5; 6] J. Ph. Labrousse proved that every operator S∈B(H) which is spectral in the sense of N. Dunford (see [3]) is similar to a T∈B(H) with the following propertyConversely, he showed that given an operator S∈B(H) such that its essential spectrum (in the sense of [5; 6]) consists of at most one point and such that S is similar to a T∈B(H) with the property (1), then S is a spectral operator. This led him to the conjecture that an operator S∈B(H) is spectral if and only if it is similar to a T∈B(H) with property (1). The purpose of this note is to prove this conjecture in the case of operators which are decomposable in the sense of C. Foias (see [2]).


1989 ◽  
Vol 31 (2) ◽  
pp. 161-163
Author(s):  
Feng Wenying ◽  
Ji Guoxing

Let B(H) be the algebra of all bounded linear operators on a separable, infinite dimensional complex Hilbert space H. Let C2 and C1 denote respectively, the Hilbert–Schmidt class and the trace class operators in B(H). It is known that C2 and C1 are two-sided*-ideals in B(H) and C2 is a Hilbert space with respect to the inner product(where tr denotes the trace). For any Hilbert–Schmidt operator X let ∥X∥2=(X, X)½ be the Hilbert-Schmidt norm of X.For fixed A ∈ B(H) let δA be the operator on B(H) defined byOperators of the form (1) are called inner derivations and they (as well as their restrictions have been extensively studied (for example [1–3]). In [1], Fuad Kittaneh proved the following result.


Author(s):  
Dang Dinh Ang ◽  
Le Hoan Hoa

AbstractLet H be a finite dimensional real or complex Hilbert space. We denote by Λ(x, y, z) the area of the triangle with vertices x, y, z ∈ H. A map f: H → H is triangle contractive TC if 0 < α < 1 and for each x, y, z ∈ H eitherorandandWe prove that if f is TC either there is a fixed point w = f(w) or a fixed line L = ⊃ f(L) We characterize the f which are TC and continuous but have no fixed point.


1995 ◽  
Vol 38 (2) ◽  
pp. 233-260 ◽  
Author(s):  
S. L. Lee ◽  
H. H. Tan ◽  
W. S. Tang

Let T be a unitary operator on a complex Hilbert space ℋ, and X, Y be finite subsets of ℋ. We give a necessary and sufficient condition for TZ(X): {Tnx: n ∈ Z, x ∈ X} to be a Riesz basis of its closed linear span 〈TZ(X)〉. If TZ(X) and TZ(Y) are Riesz bases, and 〈TZ(X)〉⊂〈TZ(Y)〉, then X is extendable to X′ such that TZ(X′) is a Riesz basis of TZ(Y) The proof provides an algorithm for the construction of Riesz bases for the orthogonal complement of 〈TZ(X)〉 in 〈TZ(Y)〉. In the case X consists of a single B-spline, the algorithm gives a natural and quick construction of the spline wavelets of Chui and Wang [2, 3]. Further, the duality principle of Chui and Wang in [3] and [4] is put in the general setting of biorthogonal Riesz bases in Hilbert space.


Sign in / Sign up

Export Citation Format

Share Document