scholarly journals INTERCHANGE RINGS

2016 ◽  
Vol 101 (3) ◽  
pp. 310-334
Author(s):  
CHARLES C. EDMUNDS

An interchange ring,$(R,+,\bullet )$, is an abelian group with a second binary operation defined so that the interchange law$(w+x)\bullet (y+z)=(w\bullet y)+(x\bullet z)$ holds. An interchange near ring is the same structure based on a group which may not be abelian. It is shown that each interchange (near) ring based on a group $G$ is formed from a pair of endomorphisms of $G$ whose images commute, and that all interchange (near) rings based on $G$ can be characterized in this manner. To obtain an associative interchange ring, the endomorphisms must be commuting idempotents in the endomorphism semigroup of $G$. For $G$ a finite abelian group, we develop a group-theoretic analogue of the simultaneous diagonalization of idempotent linear operators and show that pairs of endomorphisms which yield associative interchange rings can be diagonalized and then put into a canonical form. A best possible upper bound of $4^{r}$ can be given for the number of distinct isomorphism classes of associative interchange rings based on a finite abelian group $A$ which is a direct sum of $r$ cyclic groups of prime power order. If $A$ is a direct sum of $r$ copies of the same cyclic group of prime power order, we show that there are exactly ${\textstyle \frac{1}{6}}(r+1)(r+2)(r+3)$ distinct isomorphism classes of associative interchange rings based on $A$. Several examples are given and further comments are made about the general theory of interchange rings.

2005 ◽  
Vol 71 (3) ◽  
pp. 487-492
Author(s):  
Markku Niemenmaa

If the inner mapping group of a loop is a finite Abelian group, then the loop is centrally nilpotent. We first investigate the structure of those finite Abelian groups which are not isomorphic to inner mapping groups of loops and after this we show that if the inner mapping group of a loop is isomorphic to the direct product of two cyclic groups of the same odd prime power order pn, then our loop is centrally nilpotent of class at most n + 1.


1981 ◽  
Vol 33 (4) ◽  
pp. 817-825 ◽  
Author(s):  
Paul Hill

All groups herein are assumed to be abelian. It was not until the 1940's that it was known that a subgroup of an infinite direct sum of finite cyclic groups is again a direct sum of cyclics. This result rests on a general criterion due to Kulikov [7] for a primary abelian group to be a direct sum of cyclic groups. If G is p-primary, Kulikov's criterion presupposes that G has no elements (other than zero) having infinite p-height. For such a group G, the criterion is simply that G be the union of an ascending sequence of subgroups Hn where the heights of the elements of Hn computed in G are bounded by some positive integer λ(n). The theory of abelian groups has now developed to the point that totally projective groups currently play much the same role, at least in the theory of torsion groups, that direct sums of cyclic groups and countable groups played in combination prior to the discovery of totally projective groups and their structure beginning with a paper by R. Nunke [11] in 1967.


1997 ◽  
Vol 40 (1) ◽  
pp. 47-53 ◽  
Author(s):  
Manfred Hartl

AbstractDimension subgroups and Lie dimension subgroups are known to satisfy a ‘universal coefficient decomposition’, i.e. their value with respect to an arbitrary coefficient ring can be described in terms of their values with respect to the ‘universal’ coefficient rings given by the cyclic groups of infinite and prime power order. Here this fact is generalized to much more general types of induced subgroups, notably covering Fox subgroups and relative dimension subgroups with respect to group algebra filtrations induced by arbitrary N-series, as well as certain common generalisations of these which occur in the study of the former. This result relies on an extension of the principal universal coefficient decomposition theorem on polynomial ideals (due to Passi, Parmenter and Seghal), to all additive subgroups of group rings. This is possible by using homological instead of ring theoretical methods.


2019 ◽  
Vol 168 (3) ◽  
pp. 613-633 ◽  
Author(s):  
MARK WILDON

AbstractA group K is said to be a B-group if every permutation group containing K as a regular subgroup is either imprimitive or 2-transitive. In the second edition of his influential textbook on finite groups, Burnside published a proof that cyclic groups of composite prime-power degree are B-groups. Ten years later, in 1921, he published a proof that every abelian group of composite degree is a B-group. Both proofs are character-theoretic and both have serious flaws. Indeed, the second result is false. In this paper we explain these flaws and prove that every cyclic group of composite order is a B-group, using only Burnside’s character-theoretic methods. We also survey the related literature, prove some new results on B-groups of prime-power order, state two related open problems and present some new computational data.


1960 ◽  
Vol 12 ◽  
pp. 447-462 ◽  
Author(s):  
Ruth Rebekka Struik

In this paper G = F/Fn is studied for F a free product of a finite number of cyclic groups, and Fn the normal subgroup generated by commutators of weight n. The case of n = 4 is completely treated (F/F2 is well known; F/F3 is completely treated in (2)); special cases of n > 4 are studied; a partial conjecture is offered in regard to the unsolved cases. For n = 4 a multiplication table and other properties are given.The problem arose from Golovin's work on nilpotent products ((1), (2), (3)) which are of interest because they are generalizations of the free and direct product of groups: all nilpotent groups are factor groups of nilpotent products in the same sense that all groups are factor groups of free products, and all Abelian groups are factor groups of direct products. In particular (as is well known) every finite Abelian group is a direct product of cyclic groups. Hence it becomes of interest to investigate nilpotent products of finite cyclic groups.


1979 ◽  
Vol 22 (1) ◽  
pp. 17-21 ◽  
Author(s):  
A. D. Sands

Keller (6) considered a generalisation of a problem of Minkowski (7) concerning the filling of Rn by congruent cubes. Hajós (4) reduced Minkowski's conjecture to a problem concerning the factorization of finite abelian groups and then solved this problem. In a similar manner Hajós (5) reduced Keller's conjecture to a problem in the factorization of finite abelian groups, but this problem remains unsolved, in general. It occurs also as Problem 80 in Fuchs (3). Seitz (10) has obtained a solution for cyclic groups of prime power order. In this paper we present a solution for cyclic groups whose order is the product of two prime powers.


Symmetry ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 1537 ◽  
Author(s):  
Lingling Han ◽  
Xiuyun Guo

In this paper, we mainly count the number of subgroup chains of a finite nilpotent group. We derive a recursive formula that reduces the counting problem to that of finite p-groups. As applications of our main result, the classification problem of distinct fuzzy subgroups of finite abelian groups is reduced to that of finite abelian p-groups. In particular, an explicit recursive formula for the number of distinct fuzzy subgroups of a finite abelian group whose Sylow subgroups are cyclic groups or elementary abelian groups is given.


1974 ◽  
Vol 11 (1) ◽  
pp. 115-120 ◽  
Author(s):  
P.F. Pickel

Let F(G) denote the set of isomorphism classes of finite quotients of the group G. Two groups G and H are said to have the same finite quotients if F(G) = F(H). We construct infinitely many nonisomorphic finitely presented metabelian groups with the same finite quotients, using modules over a suitably chosen ring. These groups also give an example of infinitely many nonisomorphic split extensions of a fixed finitely presented metabelian group by a fixed finite abelian group, all having the same finite quotients.


1969 ◽  
Vol 1 (2) ◽  
pp. 245-261 ◽  
Author(s):  
Raymond G. Ayoub ◽  
Christine Ayoub

The group ring of a finite abelian group G over the field of rational numbers Q and over the rational integers Z is studied. A new proof of the fact that the group ring QG is a direct sum of cyclotomic fields is given – without use of the Maschke and Wedderburn theorems; it is shown that the projections of QG onto these fields are determined by the inequivalent characters of G. It is proved that the group of units of ZG is a direct product of a finite group and a free abelian group F and the rank of F is determined. A formula for the orthogonal idempotents of QG is found.


1981 ◽  
Vol 46 (3) ◽  
pp. 617-624 ◽  
Author(s):  
Charlotte Lin

The study of effectiveness in classical mathematics is rapidly expanding, through recent research in algebra, topology, model theory, and functional analysis. Well-known contributors are Barwise (Wisconsin), Crossley (Monash), Dekker (Rutgers), Ershoff (Novosibirsk), Feferman (Stanford), Harrington (Berkeley), Mal′cev (Novosibirsk), Morley (Cornell), Nerode (Cornell), Rabin (Hebrew University), Shore (Cornell). Further interesting work is due to Kalantari (University of California, Santa Barbara), Metakides (Rochester), Millar (Wisconsin), Remmel (University of California, San Diego), Nurtazin (Novosibirsk). Areas investigated include enumerated algebras, models of complete theories, vector spaces, fields, orderings, Hilbert spaces, and boolean algebras.We investigate the effective content of the structure theory of p-groups. Recall that a p-group is a torsion abelian group in which the (finite) order of each element is some power of a fixed prime p. (In the sequel, “group” = “additively written abelian group”.)The structure theory of p-groups is based on the two elementary notions of order and height. Recall that the order of x is the least integer n such that nx = 0. The height of x is the number of times p divides x, that is, the least n such that x = pny for some y in the group but x ≠ pn+1y for any y. If for each n ∈ ω there is a “pnth-root” yn, so that x = pnyn, then we say that x has infinite height. In 1923, Prüfer related the two notions as criteria for direct sum decomposition, provingTheorem. Every group of bounded order is a direct sum of cyclic groups, andTheorem. Every countable primary group with no (nonzero) elements of infinite height is a direct sum of cyclic groups.


Sign in / Sign up

Export Citation Format

Share Document