scholarly journals Anterior thalamic lesions produce chronic and profuse transcriptional deregulation in retrosplenial cortex: a model of retrosplenial hypoactivity and covert pathology

2008 ◽  
Vol 4 (01) ◽  
Author(s):  
G.L. Poirier ◽  
K.L. Shires ◽  
D. Sugden ◽  
E. Amin ◽  
K.L. Thomas ◽  
...  
Brain ◽  
2009 ◽  
Vol 132 (7) ◽  
pp. 1847-1857 ◽  
Author(s):  
D. L. F. Garden ◽  
P. V. Massey ◽  
D. A. Caruana ◽  
B. Johnson ◽  
E. C. Warburton ◽  
...  

Hippocampus ◽  
2014 ◽  
Vol 24 (10) ◽  
pp. 1232-1247 ◽  
Author(s):  
Bruce C. Harland ◽  
David A. Collings ◽  
Neil McNaughton ◽  
Wickliffe C. Abraham ◽  
John C. Dalrymple-Alford

2011 ◽  
Vol 29 (supplement) ◽  
pp. 352-377 ◽  
Author(s):  
Seon Hee Jang ◽  
Frank E Pollick

The study of dance has been helpful to advance our understanding of how human brain networks of action observation are influenced by experience. However previous studies have not examined the effect of extensive visual experience alone: for example, an art critic or dance fan who has a rich experience of watching dance but negligible experience performing dance. To explore the effect of pure visual experience we performed a single experiment using functional Magnetic Resonance Imaging (fMRI) to compare the neural processing of dance actions in 3 groups: a) 14 ballet dancers, b) 10 experienced viewers, c) 12 novices without any extensive dance or viewing experience. Each of the 36 participants viewed short 2-second displays of ballet derived from motion capture of a professional ballerina. These displays represented the ballerina as only points of light at the major joints. We wished to study the action observation network broadly and thus included two different types of display and two different tasks for participants to perform. The two different displays were: a) brief movies of a ballet action and b) frames from the ballet movies with the points of lights connected by lines to show a ballet posture. The two different tasks were: a) passively observe the display and b) imagine performing the action depicted in the display. The two levels of display and task were combined factorially to produce four experimental conditions (observe movie, observe posture, motor imagery of movie, motor imagery of posture). The set of stimuli used in the experiment are available for download after this paper. A random effects ANOVA was performed on brain activity and an effect of experience was obtained in seven different brain areas including: right Temporoparietal Junction (TPJ), left Retrosplenial Cortex (RSC), right Primary Somatosensory Cortex (S1), bilateral Primary Motor Cortex (M1), right Orbitofrontal Cortex (OFC), right Temporal Pole (TP). The patterns of activation were plotted in each of these areas (TPJ, RSC, S1, M1, OFC, TP) to investigate more closely how the effect of experience changed across these areas. For this analysis, novices were treated as baseline and the relative effect of experience examined in the dancer and experienced viewer groups. Interpretation of these results suggests that both visual and motor experience appear equivalent in producing more extensive early processing of dance actions in early stages of representation (TPJ and RSC) and we hypothesise that this could be due to the involvement of autobiographical memory processes. The pattern of results found for dancers in S1 and M1 suggest that their perception of dance actions are enhanced by embodied processes. For example, the S1 results are consistent with claims that this brain area shows mirror properties. The pattern of results found for the experienced viewers in OFC and TP suggests that their perception of dance actions are enhanced by cognitive processes. For example, involving aspects of social cognition and hedonic processing – the experienced viewers find the motor imagery task more pleasant and have richer connections of dance to social memory. While aspects of our interpretation are speculative the core results clearly show common and distinct aspects of how viewing experience and physical experience shape brain responses to watching dance.


2002 ◽  
Vol 97 ◽  
pp. 600-606 ◽  
Author(s):  
Chihiro Ohye ◽  
Tohru Shibazaki ◽  
Jie Zhang ◽  
Yoshitaka Andou

Object. The treatment of Parkinson disease and other kinds of involuntary movement by gamma knife radiosurgery (GKS) is presented. This is an extension of previous work. The clinical course and thalamic lesions were the main factors examined. Methods. Seventeen new cases were added to the previously reported 36 cases. The course and results for the whole series of 53 patients were examined. Treatment was undertaken using a single 4-mm collimator shot to deliver 130 Gy to the target. The target was determined in the previously treated patients by using classic methods involved in conventional stereotactic thalamotomy with microrecording. More recently, target localization has been performed by relating the target point to the total length of the thalamus. Points may then be defined as percentages of that length measured from the anterior pole. Targets can then be determined in relationship to the appropriate percentage. Thirty-five patients have been followed for more than 2 years and the longest follow up was 8 years. Two kinds of thalamic lesion were seen after GKS. Volumetric analysis on MR imaging revealed that the larger lesion was 400 to 500 mm3 at the beginning and gradually decreased in size. The smaller lesion occupied approximately 200 mm3 and also shrank over several months. Eighty percent of the treated cases showed good results and no significant complications, with the tremor subsiding at 1 year (Type 1). Several cases deviated from this standard course in four different ways (Types 2–5). If tremor persisted, conventional stereotactic thalamotomy with microrecording was performed. During such operations, normal neuronal activity was recorded from the region adjacent to the GKS thalamotomy target. This was the region showing a high signal on MR imaging. The activity patterns included the rhythmical grouped discharge of tremor rhythm. Conclusions. Gamma thalamotomy for functional disorders is still under development, but because the results with careful target planning are satisfactory, there are grounds for increasing optimism.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Daniel Gomes de Almeida-Filho ◽  
Bruna Del Vechio Koike ◽  
Francesca Billwiller ◽  
Kelly Soares Farias ◽  
Igor Rafael Praxedes de Sales ◽  
...  

AbstractHippocampal (HPC) theta oscillation during post-training rapid eye movement (REM) sleep supports spatial learning. Theta also modulates neuronal and oscillatory activity in the retrosplenial cortex (RSC) during REM sleep. To investigate the relevance of theta-driven interaction between these two regions to memory consolidation, we computed the Granger causality within theta range on electrophysiological data recorded in freely behaving rats during REM sleep, both before and after contextual fear conditioning. We found a training-induced modulation of causality between HPC and RSC that was correlated with memory retrieval 24 h later. Retrieval was proportional to the change in the relative influence RSC exerted upon HPC theta oscillation. Importantly, causality peaked during theta acceleration, in synchrony with phasic REM sleep. Altogether, these results support a role for phasic REM sleep in hippocampo-cortical memory consolidation and suggest that causality modulation between RSC and HPC during REM sleep plays a functional role in that phenomenon.


2021 ◽  
Vol 7 (11) ◽  
pp. eabf1913
Author(s):  
Takuma Kitanishi ◽  
Ryoko Umaba ◽  
Kenji Mizuseki

The dorsal hippocampus conveys various information associated with spatial navigation; however, how the information is distributed to multiple downstream areas remains unknown. We investigated this by identifying axonal projections using optogenetics during large-scale recordings from the rat subiculum, the major hippocampal output structure. Subicular neurons demonstrated a noise-resistant representation of place, speed, and trajectory, which was as accurate as or even more accurate than that of hippocampal CA1 neurons. Speed- and trajectory-dependent firings were most prominent in neurons projecting to the retrosplenial cortex and nucleus accumbens, respectively. Place-related firing was uniformly observed in neurons targeting the retrosplenial cortex, nucleus accumbens, anteroventral thalamus, and medial mammillary body. Theta oscillations and sharp-wave/ripples tightly controlled the firing of projection neurons in a target region–specific manner. In conclusion, the dorsal subiculum robustly routes diverse navigation-associated information to downstream areas.


Sign in / Sign up

Export Citation Format

Share Document