The astrobiological case for renewed robotic and human exploration of the Moon

2006 ◽  
Vol 5 (3) ◽  
pp. 191-197 ◽  
Author(s):  
I.A. Crawford

An ambitious programme of lunar exploration will reveal much of astrobiological interest. Examples include: (i) better characterization of the impact cratering rate in the Earth–Moon system, with implications for understanding the possible ‘impact frustration’ of the origin of life; (ii) preservation of ancient meteorites blasted off Earth, Mars and Venus, which may preserve evidence of the early surface environments of these planets, as well as constraining models of lithopanspermia; (iii) preservation of samples of the Earth's early atmosphere not otherwise available; (iv) preservation of cometary volatiles and organics in permanently shadowed polar craters, which would help elucidate the importance of these sources in ‘seeding’ the terrestrial planets with pre-biotic materials; and (v) possible preservation of extraterrestrial artefacts on the lunar surface, which may permit limits to be placed on the prevalence of technological civilizations in the Galaxy. Much of this valuable information is likely to be buried below the present surface (e.g. in palaeoregolith deposits) and will require a considerable amount of geological fieldwork to retrieve. This would be greatly facilitated by a renewed human presence on the Moon, and may be wholly impractical otherwise. In the longer term, such lunar operations would pave the way for the human exploration of Mars, which may also be expected to yield astrobiological discoveries not otherwise obtainable.

1962 ◽  
Vol 14 ◽  
pp. 415-418
Author(s):  
K. P. Stanyukovich ◽  
V. A. Bronshten

The phenomena accompanying the impact of large meteorites on the surface of the Moon or of the Earth can be examined on the basis of the theory of explosive phenomena if we assume that, instead of an exploding meteorite moving inside the rock, we have an explosive charge (equivalent in energy), situated at a certain distance under the surface.


The unaided eye can see roundish dark spots on the Moon set in a brighter back­ground. Telescopic observation of these dark spots, called maria (plural of mare , sea) reveals that they are nearly level terrain sparsely covered with craters. The brighter surroundings or terrae are from shadow measurements found to be higher, some 1 to 3 km above the maria. The terra elevations scatter widely, reaching several kilometres in the mountain ranges. The most prominent of these ranges occur as peripheral mountain chains around the near-circular maria. Examples are the Apennines, the Alps, the Carpathians, and the Altai Scarp. These arcuate chains surround the maria as the crater walls surround crater floors, an analogy that can be carried further and implies, apart from scale, a similar origin. This origin is almost certainly impact by massive objects. In the case of the impact maria and pre-mare craters, the source of the objects appear to have been a satellite ring around the Earth through which the Moon swept very early in its history, in its outward journey from its position of origin very near the Earth (Kuiper 1954, 1965). The post-mare craters are presumably mostly asteroidal (and partly comet­ary) in origin and related to the craters observed by Mariner IV on Mars. The estimated time dependencies of these two crater-forming processes are shown schematically in figure 1. A fuller discussion of this problem has been given else­where (Kuiper, Strom & Poole 1966; Kuiper 1966). The higher asteroidal impact rate on Mars, by a factor of about 15, as derived from the Mariner IV records, is interpreted as being due to the greater proximity to the asteroid ring. The num­erical factor approximately agrees with theory. Mars apparently lacks the equiva­lent of the initial excessively intense bombardment of the Moon (attributed to impacts by circumterrestrial bodies); unless, of course, the entire Martian surface has been molten and is directly comparable to the lunar maria. This does not seem probable but can at present not be ruled out; if true, the earliest surface history would have been erased. The nature of the mare surface has, during the past decade, been an object of much, perhaps too much, speculation. With the several recent successful lunar reconnaissance missions completed, the older interpretation of the maria as lava beds, based on telescopic observation, has been abundantly confirmed. Four options discussed in recent literature are analysed in Kuiper (1965, §§A, B, pp. 12–39). Among the most potent arguments for the lava cover of the maria are the prominent lava flows observed on Mare Imbrium and Mare Serenitatis, each having a characteristic colour. A map of some Mare Imbrium flows is found in figure 2.


Author(s):  
Gordon R. Osinski ◽  
Elizabeth A. Silber ◽  
Jacqueline Clayton ◽  
Richard A. F. Grieve ◽  
Kayle Hansen ◽  
...  

Author(s):  
Bradley L. Jolliff

Earth’s moon, hereafter referred to as “the Moon,” has been an object of intense study since before the time of the Apollo and Luna missions to the lunar surface and associated sample returns. As a differentiated rocky body and as Earth’s companion in the solar system, much study has been given to aspects such as the Moon’s surface characteristics, composition, interior, geologic history, origin, and what it records about the early history of the Earth-Moon system and the evolution of differentiated rocky bodies in the solar system. Much of the Apollo and post-Apollo knowledge came from surface geologic exploration, remote sensing, and extensive studies of the lunar samples. After a hiatus of nearly two decades following the end of Apollo and Luna missions, a new era of lunar exploration began with a series of orbital missions, including missions designed to prepare the way for longer duration human use and further exploration of the Moon. Participation in these missions has become international. The more recent missions have provided global context and have investigated composition, mineralogy, topography, gravity, tectonics, thermal evolution of the interior, thermal and radiation environments at the surface, exosphere composition and phenomena, and characteristics of the poles with their permanently shaded cold-trap environments. New samples were recognized as a class of achondrite meteorites, shown through geochemical and mineralogical similarities to have originated on the Moon. New sample-based studies with ever-improving analytical techniques and approaches have also led to significant discoveries such as the determination of volatile contents, including intrinsic H contents of lunar minerals and glasses. The Moon preserves a record of the impact history of the solar system, and new developments in timing of events, sample based and model based, are leading to a new reckoning of planetary chronology and the events that occurred in the early solar system. The new data provide the grist to test models of formation of the Moon and its early differentiation, and its thermal and volcanic evolution. Thought to have been born of a giant impact into early Earth, new data are providing key constraints on timing and process. The new data are also being used to test hypotheses and work out details such as for the magma ocean concept, the possible existence of an early magnetic field generated by a core dynamo, the effects of intense asteroidal and cometary bombardment during the first 500 million–600 million years, sequestration of volatile compounds at the poles, volcanism through time, including new information about the youngest volcanism on the Moon, and the formation and degradation processes of impact craters, so well preserved on the Moon. The Moon is a natural laboratory and cornerstone for understanding many processes operating in the space environment of the Earth and Moon, now and in the past, and of the geologic processes that have affected the planets through time. The Moon is a destination for further human exploration and activity, including use of valuable resources in space. It behooves humanity to learn as much about Earth’s nearest neighbor in space as possible.


2015 ◽  
Vol 95 (2) ◽  
pp. 131-139 ◽  
Author(s):  
M. Reuver ◽  
R.J. de Meijer ◽  
I.L. ten Kate ◽  
W. van Westrenen

AbstractRecent measurements of the chemical and isotopic composition of lunar samples indicate that the Moon's bulk composition shows great similarities with the composition of the silicate Earth. Moon formation models that attempt to explain these similarities make a wide variety of assumptions about the properties of the Earth prior to the formation of the Moon (the proto-Earth), and about the necessity and properties of an impactor colliding with the proto-Earth. This paper investigates the effects of the proto-Earth's mass, oblateness and internal core-mantle differentiation on its moment of inertia. The ratio of angular momentum and moment of inertia determines the stability of the proto-Earth and the binding energy, i.e. the energy needed to make the transition from an initial state in which the system is a rotating single body with a certain angular momentum to a final state with two bodies (Earth and Moon) with the same total angular momentum, redistributed between Earth and Moon. For the initial state two scenarios are being investigated: a homogeneous (undifferentiated) proto-Earth and a proto-Earth differentiated in a central metallic and an outer silicate shell; for both scenarios a range of oblateness values is investigated. Calculations indicate that a differentiated proto-Earth would become unstable at an angular momentum L that exceeds the total angular momentum of the present-day Earth–Moon system (L0) by factors of 2.5–2.9, with the precise maximum dependent on the proto-Earth's oblateness. Further limitations are imposed by the Roche limit and the logical condition that the separated Earth–Moon system should be formed outside the proto-Earth. This further limits the L values of the Earth–Moon system to a maximum of about L/L0 = 1.5, at a minimum oblateness (a/c ratio) of 1.2. These calculations provide boundary conditions for the main classes of Moon-forming models. Our results show that at the high values of L used in recent giant impact models (1.8 < L/L0 < 3.1), the proposed proto-Earths are unstable before (Cuk & Stewart, 2012) or immediately after (Canup, 2012) the impact, even at a high oblateness (the most favourable condition for stability). We conclude that the recent attempts to improve the classic giant impact hypothesis by studying systems with very high values of L are not supported by the boundary condition calculations in this work. In contrast, this work indicates that the nuclear explosion model for Moon formation (De Meijer et al., 2013) fulfills the boundary conditions and requires approximately one order of magnitude less energy than originally estimated. Hence in our view the nuclear explosion model is presently the model that best explains the formation of the Moon from predominantly terrestrial silicate material.


2018 ◽  
Vol 28 (1) ◽  
pp. 1-30 ◽  
Author(s):  
Andreas Eckart

AbstractAt the very beginning of the last millennium Ibn al-Haytham greatly contributed to the investigation of the Milky Way. Here, the only three currently known versions of his work on the location of the Milky Way are compared to each other and discussed. A comparison of the texts and an early translation into German by E. Wiedemann in 1906 reveals several differences that triggered a new critical translation of the passed down text. We give detailed comments on the work and check the validity of Ibn al-Haytham's arguments. We also discuss his work in the framework of the ‘Great Debate’ on the Milky Way that took place around 1920, more than a decade after Wiedemann's translation. We find that Ibn al-Haytham's work is certainly at the peak of the unaided-eye era of the Milky Way's discovery. Through his own argumentation and in comparison to Ptolemy's observations Ibn al-Haytham clearly identifies the Galaxy as an extraterrestrial body that is not part of the atmosphere but much further away than the Moon. With some of his statements on the stellar positions passed down by Ptolemy, Ibn al-Haytham also anticipates the concept of stellar proper motions.


1989 ◽  
Vol 44 (10) ◽  
pp. 891-923 ◽  
Author(s):  
A. E. Ringwood

Abstract The early thermal state of the Earth provides important constraints on hypotheses relating to its origin and its connection with the Moon. The currently popular giant impact hypothesis of lunar origin requires the Earth’s mantle to have been completely melted during the impact. Differentiation of a molten mantle would have produced strong chemical and mineralogical stratification, causing the mantle to become gravitationally stable and resistant to convective rehomogenization. The resulting composition and mineralogy of the upper mantle and primitive crust would have been dramatically different from those which have existed during the past 3.8 b. y. It is concluded that the Earth’s mantle was not extensively melted at the conclusion of accretion of the planet and therefore the hypothesis that the Moon was formed by the impact of a martian-sized planetesimal on the proto-Earth is probably incorrect. Nevertheless, a wide range of geochemical evidence demonstrates the existence of a close genetic relationship between the Moon and the Earth’s mantle. The key evidence relates to the processes of core formation in planetary bodies and resultant abundance patterns of siderophile elements which remain in their silicate mantles. Because of the complexity of the core formation process within a given body and the multiplicity of chemical and physical processes involved, the mantle siderophile signature is expected to be a unique characteristic. Thus, the siderophile signatures of Mars and of the eucrite parent body are quite distinct from that of the Earth’s mantle. Lunar siderophile geochemistry is reviewed in detail. It is demonstrated that a large group of siderophile elements display similar abundances in the terrestrial and lunar mantles. The similarity implies that a major proportion of the material now in the Moon was derived from the Earth’s mantle after core formation. This implication, however, does not require that the bulk compositions of the lunar and terrestrial mantles should be essentially identical, as is often assumed. Factors which may contribute to significant compositional differences between the two bodies within the context of a close genetic relationship are reviewed. The most promising mechanism for removing terrestrial material from the Earth’s mantle arises from the impacts of a number of large (0.001 to 0.01 ME) but not giant (≥ 0.1 ME) planetesimals after core formation and at the terminal stage of the Earth’s accretion. These impacts evaporated several times their own masses of mantle material and shock-melted considerably more. However, they did not lead to complete or extensive (e.g. > 50%) melting of the entire mantle. Impact-generated clouds of shock-melted spray and vapours were accelerated to high velocities in the presence of a primitive terrestrial atmosphere that co-rotated with the Earth. This provided an effective means of transferring angular momentum from the Earth to the ejected material which condensed to form a ring of Earth-orbiting planetesimals and moonlets. The Moon was formed by coagulation from material derived from the outer regions of this ring. Accretion of the Earth in the presence of the gases of the solar nebula and the co-rotating primitive terrestrial atmosphere may also have provided a mechanism for generating the rapid prograde spin of the proto-Earth.


Author(s):  
Ian A. Crawford ◽  
Katherine H. Joy

The lunar geological record contains a rich archive of the history of the inner Solar System, including information relevant to understanding the origin and evolution of the Earth–Moon system, the geological evolution of rocky planets, and our local cosmic environment. This paper provides a brief review of lunar exploration to-date and describes how future exploration initiatives will further advance our understanding of the origin and evolution of the Moon, the Earth–Moon system and of the Solar System more generally. It is concluded that further advances will require the placing of new scientific instruments on, and the return of additional samples from, the lunar surface. Some of these scientific objectives can be achieved robotically, for example by in situ geochemical and geophysical measurements and through carefully targeted sample return missions. However, in the longer term, we argue that lunar science would greatly benefit from renewed human operations on the surface of the Moon, such as would be facilitated by implementing the recently proposed Global Exploration Roadmap.


2020 ◽  
Author(s):  
guo linli ◽  
blanc michel ◽  
huang tieqiu ◽  
huang jiangze ◽  
yuan jianping ◽  
...  

&lt;p&gt;&amp;#160; &amp;#160; The Moon is sometimes also called the &quot;eighth continent&quot; of the Earth. Determining how to utilize cis-lunar orbital infrastructures and lunar resources to carry out new economic activities extended to the space of the Earth-Moon system is one of the long-term goals of lunar exploration activities around the world. Future long-term human deep-space exploration missions to the Moon, on the Moon surface or using the Moon to serve farther destinations will require the utilization of lunar surface or asteroid resources to produce water, oxygen and other consumables needed to maintain human survival and to produce liquid propellant for the supply of spacecraft on the lunar surface. In complement to exploration activities, Moon tourism in cis-lunar orbit and on the lunar surface will become more and more attractive with the increase of &amp;#160;human spaceflight capacity and the development of commercial space activities. However, the development of a sustainable Earth-Moon ecosystem requires that we solve the following five problems:&lt;/p&gt;&lt;p&gt;(1)How to design alow-cost cis-lunar space transportation capacity?&amp;#160;To find an optimal solution, one must compare&amp;#160;direct Earth-Moon flight modes with flights&amp;#160;based on&amp;#160;the utilization of&amp;#160;space stations, and identify the&amp;#160;most economical spacecraft architectures.&lt;/p&gt;&lt;p&gt;(2)How to design an efficient set ofcis-lunar&amp;#160;orbital&amp;#160;infrastructures combining LEO space stations, Earth-Moon L1/L2 point space stations and&amp;#160;Moon&amp;#160;bases&amp;#160;for commercial tourism, taking into account key issues such as energy,&amp;#160;communications and others?&lt;/p&gt;&lt;p&gt;(3)Significant amounts ofliquid oxygen, water,&amp;#160;liquid propellant&amp;#160;and structural material will be needed&amp;#160;for human bases, crew environmental control and life support systems, spacecraft propulsion systems, Moon surface storage and transportation&amp;#160;systems. How to &amp;#160;design in-situ resources utilization (ISRU) of the Moon, including its soil, rocks and polar&amp;#160;water ice reservoirs, to produce&amp;#160;the needed amounts?&lt;/p&gt;&lt;p&gt;(4) How to simulate on the Earth surface the different components and key technologies that will enable a future long-term human residence on the Moon surface?&lt;/p&gt;&lt;p&gt;(5). How to accommodate the co-development of&amp;#160;public and commercial&amp;#160;space&amp;#160;and foster international cooperation?&amp;#160;How can space policies and international space law help this co-development?&lt;/p&gt;&lt;p&gt;&amp;#160; &amp;#160; China has made rapid progress in robotic lunar exploration activities in the last 20 years, as illustrated by the recent discoveries provided by the Chang'e-4 lander on the far side of the Moon. By 2061, China will have gone into manned lunar exploration and built Moon bases. In preparation for this new phase of its contribution to space exploration, lunar surface simulation instruments have been built in Beijing, Shenzhen and other places in China. A series of achievements have been made in the field of space life sciences . An ambitious project to establish a large Moon base simulation test field, the Lunar Base Yulin (LBY) project, currently in its design phase in Yulin, Shaanxi Province in China, will allow the verification of key relevant technologies.&lt;/p&gt;&lt;p&gt;&amp;#160; &amp;#160; By the 2061 Horizon, we believe that international cooperation and public-private partnership will be key elements to enable this vision of a new, sustainable cis-lunar space economy.&lt;/p&gt;


2015 ◽  
Vol 39 (2) ◽  
pp. 137-167 ◽  
Author(s):  
Ian A. Crawford

There is growing interest in the possibility that the resource base of the Solar System might in future be used to supplement the economic resources of our own planet. As the Earth’s closest celestial neighbour, the Moon is sure to feature prominently in these developments. In this paper I review what is currently known about economically exploitable resources on the Moon, while also stressing the need for continued lunar exploration. I find that, although it is difficult to identify any single lunar resource that will be sufficiently valuable to drive a lunar resource extraction industry on its own (notwithstanding claims sometimes made for the 3He isotope, which are found to be exaggerated), the Moon nevertheless does possess abundant raw materials that are of potential economic interest. These are relevant to a hierarchy of future applications, beginning with the use of lunar materials to facilitate human activities on the Moon itself, and progressing to the use of lunar resources to underpin a future industrial capability within the Earth-Moon system. In this way, gradually increasing access to lunar resources may help ‘bootstrap’ a space-based economy from which the world economy, and possibly also the world’s environment, will ultimately benefit.


Sign in / Sign up

Export Citation Format

Share Document