scholarly journals Jupiter – friend or foe? IV: the influence of orbital eccentricity and inclination

2012 ◽  
Vol 11 (3) ◽  
pp. 147-156 ◽  
Author(s):  
J. Horner ◽  
B. W. Jones

AbstractFor many years, it has been assumed that Jupiter has prevented the Earth from being subject to a punishing impact regime that would have greatly hindered the development of life. Here, we present the fourth in a series of dynamical studies investigating this hypothesis. In our earlier work, we examined the effect of Jupiter's mass on the impact rate experienced by the Earth. Here, we extend that approach to consider the influence of Jupiter's orbital eccentricity and inclination on the impact rate from asteroidal bodies and short-period comets. We first considered scenarios in which Jupiter's orbital eccentricity was somewhat higher and somewhat lower than that in our Solar System, for a variety of ‘Jupiter’ masses. We find that Jupiter's orbital eccentricity plays a moderate role in determining the impact flux at Earth, with more eccentric orbits resulting in a noticeably higher impact rate of asteroids than is the case for more circular orbits. This is particularly pronounced at high ‘Jupiter’ masses. For the short-period comets, the same effect is clearly apparent, albeit to a much lesser degree. The flux of short-period comets impacting the Earth is slightly higher for more eccentric Jovian orbits. We also considered scenarios in which Jupiter's orbital inclination was greater than that in our Solar System. Increasing Jupiter's orbital inclination greatly increased the flux of asteroidal impactors upon the Earth. However, at the highest tested inclination, the disruption to the Asteroid belt was so great that the belt would be entirely depleted after an astronomically short period of time. In such a system, the impact flux from asteroid bodies would therefore be very low, after an initial period of intense bombardment. By contrast, the influence of Jovian inclination on impacts from short-period comets was very small. A slight reduction in the impact flux was noted for the moderate and high inclination scenarios considered in this work – the results for inclinations of 5° and 25° were essentially identical.

2008 ◽  
Vol 8 (2) ◽  
pp. 75-80 ◽  
Author(s):  
J. Horner ◽  
B.W. Jones

AbstractIt has long been assumed that the planet Jupiter acts as a giant shield, significantly lowering the impact rate of minor bodies upon the Earth, and thus enabling the development and evolution of life in a collisional environment which is not overly hostile. In other words, it is thought that, thanks to Jupiter, mass extinctions have been sufficiently infrequent that the biosphere has been able to diversify and prosper. However, in the past, little work has been carried out to examine the validity of this idea. In the second of a series of papers, we examine the degree to which the impact risk resulting from objects on Centaur-like orbits is affected by the presence of a giant planet, in an attempt to fully understand the impact regime under which life on Earth has developed. The Centaurs are a population of ice-rich bodies which move on dynamically unstable orbits in the outer Solar system. The largest Centaurs known are several hundred kilometres in diameter, and it is certain that a great number of kilometre or sub-kilometre sized Centaurs still await discovery. These objects move on orbits which bring them closer to the Sun than Neptune, although they remain beyond the orbit of Jupiter at all times, and have their origins in the vast reservoir of debris known as the Edgeworth–Kuiper belt that extends beyond Neptune. Over time, the giant planets perturb the Centaurs, sending a significant fraction into the inner Solar System where they become visible as short-period comets. In this work, we obtain results which show that the presence of a giant planet can act to significantly change the impact rate of short-period comets on the Earth, and that such planets often actually increase the impact flux greatly over that which would be expected were a giant planet not present.


2010 ◽  
Vol 9 (4) ◽  
pp. 227-234 ◽  
Author(s):  
J. Horner ◽  
P. S. Lykawka

AbstractOne of the key considerations when assessing the potential habitability of telluric worlds will be that of the impact regime experienced by the planet. In this work, we present a short review of our understanding of the impact regime experienced by the terrestrial planets within our own Solar system, describing the three populations of potentially hazardous objects which move on orbits that take them through the inner Solar system. Of these populations, the origins of two (the Near-Earth Asteroids and the Long-Period Comets) are well understood, with members originating in the Asteroid belt and Oort cloud, respectively. By contrast, the source of the third population, the Short-Period Comets, is still under debate. The proximate source of these objects is the Centaurs, a population of dynamically unstable objects that pass perihelion (closest approach to the Sun) between the orbits of Jupiter and Neptune. However, a variety of different origins have been suggested for the Centaur population. Here, we present evidence that at least a significant fraction of the Centaur population can be sourced from the planetary Trojan clouds, stable reservoirs of objects moving in 1:1 mean-motion resonance with the giant planets (primarily Jupiter and Neptune). Focussing on simulations of the Neptunian Trojan population, we show that an ongoing flux of objects should be leaving that region to move on orbits within the Centaur population. With conservative estimates of the flux from the Neptunian Trojan clouds, we show that their contribution to that population could be of order ~3%, while more realistic estimates suggest that the Neptune Trojans could even be the main source of fresh Centaurs. We suggest that further observational work is needed to constrain the contribution made by the Neptune Trojans to the ongoing flux of material to the inner Solar system, and believe that future studies of the habitability of exoplanetary systems should take care not to neglect the contribution of resonant objects (such as planetary Trojans) to the impact flux that could be experienced by potentially habitable worlds.


2021 ◽  
Author(s):  
Miranda Margulis-Ohnuma ◽  
Jessica Whiteside ◽  
Paul Olsen

<p>Gravitational interactions among masses in the solar system are recorded in Earth’s paleoclimate history because variations in the geometry of Earth’s orbit and axial orientation modulate solar insolation. However, astronomical models prior to ca. 60 Ma are unreliable due to the unpredictable nature of orbital chaos in the solar system, and therefore such models must be constrained using geological data. Here, we use natural gamma radioactivity and other environmental proxies from paleo-tropical Late Triassic lake deposits of the Newark Rift Basin of eastern North America, previously shown to be paced by variations in axial precession and orbital eccentricity and stratigraphically constrained by U-Pb dating, to explore hitherto undescribed strong variations in orbital inclination in the 201–206 Ma interval (lacustrine, upper Passaic Formation), where lake level variations are particularly muted. We identify the Earth-Saturn 173 kyr orbital inclination cycle and use it to tune the sequence because it exhibits high theoretical stability and metronomic behavior due to the very large mass of Saturn. We tune separately to long-eccentricity as well, with similar effect. Slight, complimentary offsets in the other inclination and eccentricity periods revealed by the Earth-Saturn (s3-s6) and Venus-Jupiter (g2-g5) tunings are apparent that may be due to chaotic variations of the secular fundamental frequencies in the nodal and perihelion orbital precessions of Earth and Venus, respectively. The surprising strength of the inclination cycles in this specific sequence suggest an additional modulating effect of the Earth System on expression of the components of orbital pacing of climate, as well a mechanism to more fully constrain the secular fundamental frequencies of the solar system beyond the ca. 60 Myr limit of predictability that chaos imposes on astronomical solutions.</p>


2017 ◽  
Vol 44 (1) ◽  
pp. 1 ◽  
Author(s):  
Richard A.F. Grieve

The current record of large-scale impact on Earth consists of close to 200 impact structures and some 30 impact events recorded in the stratigraphic record, only some of which are related to known structures. It is a preservation sample of a much larger production population, with the impact rate on Earth being higher than that of the moon. This is due to the Earth’s larger physical and gravitational cross-sections, with respect to asteroidal and cometary bodies entering the inner solar system. While terrestrial impact structures have been studied as the only source of ground-truth data on impact as a planetary process, it is becoming increasingly acknowledged that large-scale impact has had its effects on the geologic history of the Earth, itself. As extremely high energy events, impacts redistribute, disrupt and reprocess target lithologies, resulting in topographic, structural and thermal anomalies in the upper crust. This has resulted in many impact structures being the source of natural resources, including some world-class examples, such as gold and uranium at Vredefort, South Africa, Ni–Cu–PGE sulphides at Sudbury, Canada and hydrocarbons from the Campeche Bank, Mexico. Large-scale impact also has the potential to disrupt the terrestrial biosphere. The most devastating known example is the evidence for the role of impact in the Cretaceous–Paleocene (K–Pg) mass extinction event and the formation of the Chicxulub structure, Mexico. It also likely had a role in other, less dramatic, climatic excursions, such as the Paleocene–Eocene–Thermal Maximum (PETM) event. The impact rate was much higher in early Earth history and, while based on reasoned speculation, it is argued that the early surface of the Hadean Earth was replete with massive impact melt pools, in place of the large multiring basins that formed on the lower gravity moon in the same time-period. These melt pools would differentiate to form more felsic upper lithologies and, thus, are a potential source for Hadean-aged zircons, without invoking more modern geodynamic scenarios. The Earth-moon system is unique in the inner solar system and currently the best working hypothesis for its origin is a planetary-scale impact with the proto-Earth, after core formation at ca. 4.43 Ga. Future large-scale impact is a low probability event but with high consequences and has the potential to create a natural disaster of proportions unequalled by other geologic processes and threaten the extended future of human civilization, itself.RÉSUMÉLe bilan actuel de traces de grands impacts sur la Terre se compose de près de 200 astroblèmes et d'une trentaine d’impacts enregistrés dans la stratigraphie, dont seulement certains sont liés à des astroblèmes connus. Il s'agit d'échantillons préservés sur une population d’événements beaucoup plus importante, le taux d'impact sur Terre étant supérieur à celui de la lune. Cela tient aux plus grandes sections transversales physiques et gravitationnelles de la Terre sur la trajectoire des astéroïdes et comètes qui pénètrent le système solaire interne. Alors que les astroblèmes terrestres ont été étudiés comme étant la seule source de données avérée d’impacts en tant que processus planétaire, de plus en plus on reconnaît que les grands impacts ont eu des effets sur l'histoire géologique de la Terre. À l’instar des événements d'énergie extrême, les impacts redistribuent, perturbent et remanient les lithologies impliquées, provoquant dans la croûte terrestre supérieure des anomalies topographiques, structurelles et thermiques. Il en a résulté de nombreux astroblèmes à l’origine de ressources naturelles, dont certains exemples de classe mondiale tels que l'or et l'uranium à Vredefort en Afrique du Sud, les sulfures de Ni–Cu–PGE à Sudbury au Canada, et les hydrocarbures du Banc de Campeche au Mexique. Les grands impacts peuvent également perturber la biosphère terrestre. L'exemple le plus dévastateur connu nous est donné des indices du rôle de l'impact dans l'extinction de masse au Crétacé–Paléogène (K–Pg) et la formation de la structure de Chicxulub, au Mexique. Il a également probablement joué un rôle dans d'autres événements climatiques extraordinaires moins dramatiques, comme le Maximum thermal du Paleocène–Eocène (PETM). Le taux d'impact était beaucoup plus élevé au début de l'histoire de la Terre et, tout en étant basé sur une spéculation raisonnée, on fait valoir que la surface précoce de la Terre à l’Hadéen était tapissée de grands bassins en fusion, au lieu de grands bassins à couronnes multiples tels ceux qui se sont formés à la même période sur la lune ayant une gravité inférieure. Ces bassins en fusion se seraient différenciées pour constituer des lithologies plus felsiques sur le dessus, devenant ainsi une source potentielle de zircons d’âge Hadéen, sans qu’il soit nécessaire d’invoquer des scénarios géodynamiques plus récents. Le système Terre-lune est unique dans le système solaire interne. Actuellement la meilleure hypothèse de travail pour son origine est un impact planétaire avec la proto-Terre, après la formation du noyau à env. 4,43 Ga. La probabilité d’un futur grand impact est faible mais comporte des conséquences capables d’engendrer un désastre naturel aux proportions inégalées comparé à d'autres processus géologiques, menaçant l'avenir de la civilisation humaine elle-même.


1962 ◽  
Vol 14 ◽  
pp. 133-148 ◽  
Author(s):  
Harold C. Urey

During the last 10 years, the writer has presented evidence indicating that the Moon was captured by the Earth and that the large collisions with its surface occurred within a surprisingly short period of time. These observations have been a continuous preoccupation during the past years and some explanation that seemed physically possible and reasonably probable has been sought.


Author(s):  
Bradley L. Jolliff

Earth’s moon, hereafter referred to as “the Moon,” has been an object of intense study since before the time of the Apollo and Luna missions to the lunar surface and associated sample returns. As a differentiated rocky body and as Earth’s companion in the solar system, much study has been given to aspects such as the Moon’s surface characteristics, composition, interior, geologic history, origin, and what it records about the early history of the Earth-Moon system and the evolution of differentiated rocky bodies in the solar system. Much of the Apollo and post-Apollo knowledge came from surface geologic exploration, remote sensing, and extensive studies of the lunar samples. After a hiatus of nearly two decades following the end of Apollo and Luna missions, a new era of lunar exploration began with a series of orbital missions, including missions designed to prepare the way for longer duration human use and further exploration of the Moon. Participation in these missions has become international. The more recent missions have provided global context and have investigated composition, mineralogy, topography, gravity, tectonics, thermal evolution of the interior, thermal and radiation environments at the surface, exosphere composition and phenomena, and characteristics of the poles with their permanently shaded cold-trap environments. New samples were recognized as a class of achondrite meteorites, shown through geochemical and mineralogical similarities to have originated on the Moon. New sample-based studies with ever-improving analytical techniques and approaches have also led to significant discoveries such as the determination of volatile contents, including intrinsic H contents of lunar minerals and glasses. The Moon preserves a record of the impact history of the solar system, and new developments in timing of events, sample based and model based, are leading to a new reckoning of planetary chronology and the events that occurred in the early solar system. The new data provide the grist to test models of formation of the Moon and its early differentiation, and its thermal and volcanic evolution. Thought to have been born of a giant impact into early Earth, new data are providing key constraints on timing and process. The new data are also being used to test hypotheses and work out details such as for the magma ocean concept, the possible existence of an early magnetic field generated by a core dynamo, the effects of intense asteroidal and cometary bombardment during the first 500 million–600 million years, sequestration of volatile compounds at the poles, volcanism through time, including new information about the youngest volcanism on the Moon, and the formation and degradation processes of impact craters, so well preserved on the Moon. The Moon is a natural laboratory and cornerstone for understanding many processes operating in the space environment of the Earth and Moon, now and in the past, and of the geologic processes that have affected the planets through time. The Moon is a destination for further human exploration and activity, including use of valuable resources in space. It behooves humanity to learn as much about Earth’s nearest neighbor in space as possible.


1999 ◽  
Vol 172 ◽  
pp. 25-37
Author(s):  
S. Ferraz-Mello

AbstractThis paper reviews recent advances in several topics of resonant asteroidal dynamics as the role of resonances in the transportation of asteroids and asteroidal debris to the inner and outer solar system; the explanation of the contrast of a depleted 2/1 resonance (Hecuba gap) and a high-populated 3/2 resonance (Hilda group); the overall stochasticity created in the asteroid belt by the short-period perturbations of Jupiter’s orbit, with emphasis in the formation of significant three-period resonances, the chaotic behaviour of the outer asteroid belt, and the depletion of the Hecuba gap.


2015 ◽  
Vol 112 (14) ◽  
pp. 4214-4217 ◽  
Author(s):  
Konstantin Batygin ◽  
Greg Laughlin

The statistics of extrasolar planetary systems indicate that the default mode of planet formation generates planets with orbital periods shorter than 100 days and masses substantially exceeding that of the Earth. When viewed in this context, the Solar System is unusual. Here, we present simulations which show that a popular formation scenario for Jupiter and Saturn, in which Jupiter migrates inward from a > 5 astronomical units (AU) to a ≈ 1.5 AU before reversing direction, can explain the low overall mass of the Solar System’s terrestrial planets, as well as the absence of planets with a < 0.4 AU. Jupiter’s inward migration entrained s ≳ 10−100 km planetesimals into low-order mean motion resonances, shepherding and exciting their orbits. The resulting collisional cascade generated a planetesimal disk that, evolving under gas drag, would have driven any preexisting short-period planets into the Sun. In this scenario, the Solar System’s terrestrial planets formed from gas-starved mass-depleted debris that remained after the primary period of dynamical evolution.


Author(s):  
Mario Trieloff

Although the second most abundant element in the cosmos is helium, noble gases are also called rare gases. The reason is that they are not abundant on terrestrial planets like the Earth, which is characterized by orders of magnitude depletion of—particularly light—noble gases when compared to the cosmic element abundance pattern. Indeed, geochemical depletion and enrichment processes mean that noble gases are highly versatile tracers of planetary formation and evolution. When our solar system formed—or even before—small grains and first condensates incorporated small amounts of noble gases from the surrounding gas of solar composition, resulting in depletion of light He and Ne relative to heavy Ar, Kr, and Xe, leading to the “planetary type” abundance pattern. Further noble gas depletion occurred during flash heating of mm- to cm-sized objects (chondrules and calcium, aluminum-rich inclusions), and subsequently during heating—and occasionally differentiation—on small planetesimals, which were precursors of planets. Some of these objects are present today in the asteroid belt and are the source of many meteorites. Many primitive meteorites contain very small (micron to sub-micron size) rare grains that are older than our Solar System and condensed billions of years ago in in the atmospheres of different stars, for example, Red Giant stars. These grains are characterized by nucleosynthetic anomalies, in particular the noble gases, such as so-called s-process xenon. While planetesimals acquired a depleted noble gas component strongly fractionated in favor of heavy noble gases, the Sun and also gas giants like Jupiter attracted a much larger amount of gas from the protosolar nebula by gravitational capture. This resulted in a cosmic or “solar type” abundance pattern, containing the full complement of light noble gases. In contrast, terrestrial planets accreted from planetesimals with only minor contributions from the gaseous component of the protosolar nebula, which accounts for their high degree of depletion and essentially “planetary” elemental abundance pattern. The strong depletion in noble gases facilitates their application as noble gas geo- and cosmochronometers; chronological applications are based on being able to determine noble gas isotopes formed by radioactive decay processes, for example, 40Ar by 40K decay, 129Xe by 129I decay, or fission Xe from 238U or 244Pu decay. Particularly ingrowth of radiogenic xenon is only possible due to the depletion of primordial nuclides, which allows insight into the chronology of fractionation of lithophile parent nuclides and atmophile noble gas daughters. Applied to large-scale planetary reservoirs, this helps to elucidate the timing of mantle degassing and evolution of planetary atmospheres. Applied to individual rocks and minerals, it allows radioisotope chronology using short-lived (e.g., 129I–129Xe) or long-lived (e.g., 40K–40Ar) systems. The dominance of 40Ar in the terrestrial atmosphere allowed von Weizsäcker to conclude that most of the terrestrial atmosphere originated by degassing of the solid Earth, which is an ongoing process today at mid-ocean ridges, as indicated by outgassing of primordial helium from newly forming ocean crust. Mantle degassing was much more massive in the past, with most of the terrestrial atmosphere probably formed during the first few 100 million years of Earth’s history, in response to major evolutionary processes of accretion, terrestrial core formation, and the terminal accretion stage of a giant impact that formed our Moon. During accretion, solar noble gases were added to the mantle, presumably by solar wind irradiation of the small planetesimals and dust accreting to form the Earth. While the Moon-forming impact likely dissipated a major fraction of the primordial atmosphere, today’s atmosphere originated by addition of a late veneer of asteroidal and possibly cometary material combined with a decreasing rate of mantle degassing over time. As other atmophile elements behave similarly to noble gases, they also trace the origin of major volatiles on Earth, for example, water, nitrogen, and carbon.


2020 ◽  
Author(s):  
Stephen J. Mojzsis ◽  
Oleg Abramov

&lt;p&gt;Late accretionary bombardments in the first billion years of solar system history strongly affected the initial physical and chemical states of the Earth. Evidence of ancient impacts can be preserved in the oldest known terrestrial zircons with ages up to ca. 4.4 Ga. Here, we use the Hadean zircon record to directly assess the thermal effects of impact bombardment on the early Earth&amp;#8217;s crust, couple the results to models of closure temperature-dependent diffusive loss and U-Pb age-resetting in zircon, derive zircon ages, and compare them to published ages.&lt;/p&gt;&lt;p&gt;The impact bombardment model consists of (i) a stochastic cratering model which populates the surface with craters within constraints derived from the lunar cratering record, the size/frequency distribution of the asteroid belt, and dynamical models; (ii) analytical expressions that calculate a temperature field for each crater; and (iii) a three-dimensional thermal model of the terrestrial lithosphere, where craters are allowed to cool by conduction and radiation. Equations for diffusion in zircon are coupled to these thermal models to estimate the amount of age-resetting.&lt;/p&gt;&lt;p&gt;We present modeling results for the Earth between 4.5 Ga and 3.5 Ga based new mass-production functions. Mean surface temperatures and geothermal gradients were assumed as 20 &amp;#176;C and 70 &amp;#176;C/km. Total delivered mass was estimated at 0.0013(M&lt;sub&gt;planet&lt;/sub&gt;), or 7.8 &amp;#215; 10&lt;sup&gt;21&lt;/sup&gt; kg. The size-frequency distributions of the impacts were derived from dynamical modeling. We begin model runs with a global magma ocean, which would have been formed by the Moon-forming impact. Mean impactor density of 3000 kg/m&lt;sup&gt;3&lt;/sup&gt; and impactor velocity distribution from [1,2] was used, and impact angle of each impactor was stochastically generated from a gaussian centered at 45 degrees. The typical impact velocity of the Earth is ~21 km s&lt;sup&gt;-1&lt;/sup&gt;.&lt;/p&gt;&lt;p&gt;It is important to note that the model age outputs we report omit normal processes of generation of zircon-saturated magmas that were operative in the Hadean. We find that as the impact flux decreases with time and becomes negligible for the purposes of thermal modeling by ca. 3.5 Ga. We find that the probability of randomly selecting a zircon of a given age increases with increasing age, predicting a large number of very old zircons. This contrasts with the actual age distribution of Hadean zircons, which, for &gt;4 Ga, indicates the opposite case: the probability of selecting a zircon of a given age decreases with increasing age. We interpret this discrepancy to mean that impacts were not the dominant process in determining the ages of Hadean zircons. This is consistent with observations that the majority of Hadean zircons had formation temperature significantly lower than those expected for melt sheets and thermobarometry measurements suggesting formation of some Hadean zircons in a plate boundary environment.&lt;/p&gt;&lt;p&gt;[1] Mojzsis, S.J. et al. (2019). Astrophys. J., 881, 44. [2] Brasser, R. et al. (2020) Icarus 338, 113514.&amp;#160;&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document