scholarly journals Logan Medallist 4. Large-Scale Impact and Earth History

2017 ◽  
Vol 44 (1) ◽  
pp. 1 ◽  
Author(s):  
Richard A.F. Grieve

The current record of large-scale impact on Earth consists of close to 200 impact structures and some 30 impact events recorded in the stratigraphic record, only some of which are related to known structures. It is a preservation sample of a much larger production population, with the impact rate on Earth being higher than that of the moon. This is due to the Earth’s larger physical and gravitational cross-sections, with respect to asteroidal and cometary bodies entering the inner solar system. While terrestrial impact structures have been studied as the only source of ground-truth data on impact as a planetary process, it is becoming increasingly acknowledged that large-scale impact has had its effects on the geologic history of the Earth, itself. As extremely high energy events, impacts redistribute, disrupt and reprocess target lithologies, resulting in topographic, structural and thermal anomalies in the upper crust. This has resulted in many impact structures being the source of natural resources, including some world-class examples, such as gold and uranium at Vredefort, South Africa, Ni–Cu–PGE sulphides at Sudbury, Canada and hydrocarbons from the Campeche Bank, Mexico. Large-scale impact also has the potential to disrupt the terrestrial biosphere. The most devastating known example is the evidence for the role of impact in the Cretaceous–Paleocene (K–Pg) mass extinction event and the formation of the Chicxulub structure, Mexico. It also likely had a role in other, less dramatic, climatic excursions, such as the Paleocene–Eocene–Thermal Maximum (PETM) event. The impact rate was much higher in early Earth history and, while based on reasoned speculation, it is argued that the early surface of the Hadean Earth was replete with massive impact melt pools, in place of the large multiring basins that formed on the lower gravity moon in the same time-period. These melt pools would differentiate to form more felsic upper lithologies and, thus, are a potential source for Hadean-aged zircons, without invoking more modern geodynamic scenarios. The Earth-moon system is unique in the inner solar system and currently the best working hypothesis for its origin is a planetary-scale impact with the proto-Earth, after core formation at ca. 4.43 Ga. Future large-scale impact is a low probability event but with high consequences and has the potential to create a natural disaster of proportions unequalled by other geologic processes and threaten the extended future of human civilization, itself.RÉSUMÉLe bilan actuel de traces de grands impacts sur la Terre se compose de près de 200 astroblèmes et d'une trentaine d’impacts enregistrés dans la stratigraphie, dont seulement certains sont liés à des astroblèmes connus. Il s'agit d'échantillons préservés sur une population d’événements beaucoup plus importante, le taux d'impact sur Terre étant supérieur à celui de la lune. Cela tient aux plus grandes sections transversales physiques et gravitationnelles de la Terre sur la trajectoire des astéroïdes et comètes qui pénètrent le système solaire interne. Alors que les astroblèmes terrestres ont été étudiés comme étant la seule source de données avérée d’impacts en tant que processus planétaire, de plus en plus on reconnaît que les grands impacts ont eu des effets sur l'histoire géologique de la Terre. À l’instar des événements d'énergie extrême, les impacts redistribuent, perturbent et remanient les lithologies impliquées, provoquant dans la croûte terrestre supérieure des anomalies topographiques, structurelles et thermiques. Il en a résulté de nombreux astroblèmes à l’origine de ressources naturelles, dont certains exemples de classe mondiale tels que l'or et l'uranium à Vredefort en Afrique du Sud, les sulfures de Ni–Cu–PGE à Sudbury au Canada, et les hydrocarbures du Banc de Campeche au Mexique. Les grands impacts peuvent également perturber la biosphère terrestre. L'exemple le plus dévastateur connu nous est donné des indices du rôle de l'impact dans l'extinction de masse au Crétacé–Paléogène (K–Pg) et la formation de la structure de Chicxulub, au Mexique. Il a également probablement joué un rôle dans d'autres événements climatiques extraordinaires moins dramatiques, comme le Maximum thermal du Paleocène–Eocène (PETM). Le taux d'impact était beaucoup plus élevé au début de l'histoire de la Terre et, tout en étant basé sur une spéculation raisonnée, on fait valoir que la surface précoce de la Terre à l’Hadéen était tapissée de grands bassins en fusion, au lieu de grands bassins à couronnes multiples tels ceux qui se sont formés à la même période sur la lune ayant une gravité inférieure. Ces bassins en fusion se seraient différenciées pour constituer des lithologies plus felsiques sur le dessus, devenant ainsi une source potentielle de zircons d’âge Hadéen, sans qu’il soit nécessaire d’invoquer des scénarios géodynamiques plus récents. Le système Terre-lune est unique dans le système solaire interne. Actuellement la meilleure hypothèse de travail pour son origine est un impact planétaire avec la proto-Terre, après la formation du noyau à env. 4,43 Ga. La probabilité d’un futur grand impact est faible mais comporte des conséquences capables d’engendrer un désastre naturel aux proportions inégalées comparé à d'autres processus géologiques, menaçant l'avenir de la civilisation humaine elle-même.

Author(s):  
Bradley L. Jolliff

Earth’s moon, hereafter referred to as “the Moon,” has been an object of intense study since before the time of the Apollo and Luna missions to the lunar surface and associated sample returns. As a differentiated rocky body and as Earth’s companion in the solar system, much study has been given to aspects such as the Moon’s surface characteristics, composition, interior, geologic history, origin, and what it records about the early history of the Earth-Moon system and the evolution of differentiated rocky bodies in the solar system. Much of the Apollo and post-Apollo knowledge came from surface geologic exploration, remote sensing, and extensive studies of the lunar samples. After a hiatus of nearly two decades following the end of Apollo and Luna missions, a new era of lunar exploration began with a series of orbital missions, including missions designed to prepare the way for longer duration human use and further exploration of the Moon. Participation in these missions has become international. The more recent missions have provided global context and have investigated composition, mineralogy, topography, gravity, tectonics, thermal evolution of the interior, thermal and radiation environments at the surface, exosphere composition and phenomena, and characteristics of the poles with their permanently shaded cold-trap environments. New samples were recognized as a class of achondrite meteorites, shown through geochemical and mineralogical similarities to have originated on the Moon. New sample-based studies with ever-improving analytical techniques and approaches have also led to significant discoveries such as the determination of volatile contents, including intrinsic H contents of lunar minerals and glasses. The Moon preserves a record of the impact history of the solar system, and new developments in timing of events, sample based and model based, are leading to a new reckoning of planetary chronology and the events that occurred in the early solar system. The new data provide the grist to test models of formation of the Moon and its early differentiation, and its thermal and volcanic evolution. Thought to have been born of a giant impact into early Earth, new data are providing key constraints on timing and process. The new data are also being used to test hypotheses and work out details such as for the magma ocean concept, the possible existence of an early magnetic field generated by a core dynamo, the effects of intense asteroidal and cometary bombardment during the first 500 million–600 million years, sequestration of volatile compounds at the poles, volcanism through time, including new information about the youngest volcanism on the Moon, and the formation and degradation processes of impact craters, so well preserved on the Moon. The Moon is a natural laboratory and cornerstone for understanding many processes operating in the space environment of the Earth and Moon, now and in the past, and of the geologic processes that have affected the planets through time. The Moon is a destination for further human exploration and activity, including use of valuable resources in space. It behooves humanity to learn as much about Earth’s nearest neighbor in space as possible.


2008 ◽  
Vol 8 (2) ◽  
pp. 75-80 ◽  
Author(s):  
J. Horner ◽  
B.W. Jones

AbstractIt has long been assumed that the planet Jupiter acts as a giant shield, significantly lowering the impact rate of minor bodies upon the Earth, and thus enabling the development and evolution of life in a collisional environment which is not overly hostile. In other words, it is thought that, thanks to Jupiter, mass extinctions have been sufficiently infrequent that the biosphere has been able to diversify and prosper. However, in the past, little work has been carried out to examine the validity of this idea. In the second of a series of papers, we examine the degree to which the impact risk resulting from objects on Centaur-like orbits is affected by the presence of a giant planet, in an attempt to fully understand the impact regime under which life on Earth has developed. The Centaurs are a population of ice-rich bodies which move on dynamically unstable orbits in the outer Solar system. The largest Centaurs known are several hundred kilometres in diameter, and it is certain that a great number of kilometre or sub-kilometre sized Centaurs still await discovery. These objects move on orbits which bring them closer to the Sun than Neptune, although they remain beyond the orbit of Jupiter at all times, and have their origins in the vast reservoir of debris known as the Edgeworth–Kuiper belt that extends beyond Neptune. Over time, the giant planets perturb the Centaurs, sending a significant fraction into the inner Solar System where they become visible as short-period comets. In this work, we obtain results which show that the presence of a giant planet can act to significantly change the impact rate of short-period comets on the Earth, and that such planets often actually increase the impact flux greatly over that which would be expected were a giant planet not present.


2012 ◽  
Vol 11 (3) ◽  
pp. 147-156 ◽  
Author(s):  
J. Horner ◽  
B. W. Jones

AbstractFor many years, it has been assumed that Jupiter has prevented the Earth from being subject to a punishing impact regime that would have greatly hindered the development of life. Here, we present the fourth in a series of dynamical studies investigating this hypothesis. In our earlier work, we examined the effect of Jupiter's mass on the impact rate experienced by the Earth. Here, we extend that approach to consider the influence of Jupiter's orbital eccentricity and inclination on the impact rate from asteroidal bodies and short-period comets. We first considered scenarios in which Jupiter's orbital eccentricity was somewhat higher and somewhat lower than that in our Solar System, for a variety of ‘Jupiter’ masses. We find that Jupiter's orbital eccentricity plays a moderate role in determining the impact flux at Earth, with more eccentric orbits resulting in a noticeably higher impact rate of asteroids than is the case for more circular orbits. This is particularly pronounced at high ‘Jupiter’ masses. For the short-period comets, the same effect is clearly apparent, albeit to a much lesser degree. The flux of short-period comets impacting the Earth is slightly higher for more eccentric Jovian orbits. We also considered scenarios in which Jupiter's orbital inclination was greater than that in our Solar System. Increasing Jupiter's orbital inclination greatly increased the flux of asteroidal impactors upon the Earth. However, at the highest tested inclination, the disruption to the Asteroid belt was so great that the belt would be entirely depleted after an astronomically short period of time. In such a system, the impact flux from asteroid bodies would therefore be very low, after an initial period of intense bombardment. By contrast, the influence of Jovian inclination on impacts from short-period comets was very small. A slight reduction in the impact flux was noted for the moderate and high inclination scenarios considered in this work – the results for inclinations of 5° and 25° were essentially identical.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
An Zheng ◽  
Michael Lamkin ◽  
Yutong Qiu ◽  
Kevin Ren ◽  
Alon Goren ◽  
...  

Abstract Background A major challenge in evaluating quantitative ChIP-seq analyses, such as peak calling and differential binding, is a lack of reliable ground truth data. Accurate simulation of ChIP-seq data can mitigate this challenge, but existing frameworks are either too cumbersome to apply genome-wide or unable to model a number of important experimental conditions in ChIP-seq. Results We present ChIPs, a toolkit for rapidly simulating ChIP-seq data using statistical models of key experimental steps. We demonstrate how ChIPs can be used for a range of applications, including benchmarking analysis tools and evaluating the impact of various experimental parameters. ChIPs is implemented as a standalone command-line program written in C++ and is available from https://github.com/gymreklab/chips. Conclusions ChIPs is an efficient ChIP-seq simulation framework that generates realistic datasets over a flexible range of experimental conditions. It can serve as an important component in various ChIP-seq analyses where ground truth data are needed.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Zhaoyang Zhao ◽  
Chong Ye

“Fast fashion” represents a short product life cycle, and international SPA enterprises are therefore criticised as representatives of high energy consumption, pollution, and emissions, which is contrary to China’s goal of achieving carbon neutrality. In the context of China’s shift to a low-carbon economic development model, how should SPA enterprises breakthrough in the face of China’s large-scale market advantage and domestic demand potential? Based on the statistics of 277 prefecture-level cities from 2010 to 2018, this article selects 5 leading international SPA enterprises and uses the difference-in-differences (DID) method to explore the impact of low-carbon initiative on the location expansion of international SPA enterprises. The results suggest that the quantity of location expansions of SPA enterprises in the pilot cities is significantly lower by approximately 0.418 units compared with the nonpilot cities, implying that the low-carbon initiative has a significant inhibitory effect on the location expansion of SPA enterprises. After a series of robustness tests, the conclusion is valid. The results of the heterogeneity test suggest that the suppression effect is mainly found in the subsample of central cities and cities with medium and low levels of economic development. This article proposes that SPA enterprises should reduce their carbon emissions and gradually explore a green and sustainable development path.


2006 ◽  
Vol 24 (8) ◽  
pp. 2075-2089 ◽  
Author(s):  
A. Chakraborty ◽  
R. S. Nanjundiah ◽  
J. Srinivasan

Abstract. A theory is proposed to determine the onset of the Indian Summer Monsoon (ISM) in an Atmospheric General Circulation Model (AGCM). The onset of ISM is delayed substantially in the absence of global orography. The impact of orography over different parts of the Earth on the onset of ISM has also been investigated using five additional perturbed simulations. The large difference in the date of onset of ISM in these simulations has been explained by a new theory based on the Surface Moist Static Energy (SMSE) and vertical velocity at the mid-troposphere. It is found that onset occurs only after SMSE crosses a threshold value and the large-scale vertical motion in the middle troposphere becomes upward. This study shows that both dynamics and thermodynamics play profound roles in the onset of the monsoon.


2020 ◽  
Vol 2020 (10) ◽  
Author(s):  
Yang Bai ◽  
Joshua Berger ◽  
Mrunal Korwar ◽  
Nicholas Orlofsky

Abstract Magnetically charged black holes (MBHs) are interesting solutions of the Standard Model and general relativity. They may possess a “hairy” electroweak-symmetric corona outside the event horizon, which speeds up their Hawking radiation and leads them to become nearly extremal on short timescales. Their masses could range from the Planck scale up to the Earth mass. We study various methods to search for primordially produced MBHs and estimate the upper limits on their abundance. We revisit the Parker bound on magnetic monopoles and show that it can be extended by several orders of magnitude using the large-scale coherent magnetic fields in Andromeda. This sets a mass-independent constraint that MBHs have an abundance less than 4 × 10−4 times that of dark matter. MBHs can also be captured in astrophysical systems like the Sun, the Earth, or neutron stars. There, they can become non-extremal either from merging with an oppositely charged MBH or absorbing nucleons. The resulting Hawking radiation can be detected as neutri- nos, photons, or heat. High-energy neutrino searches in particular can set a stronger bound than the Parker bound for some MBH masses, down to an abundance 10−7 of dark matter.


Author(s):  
Suppawong Tuarob ◽  
Conrad S. Tucker

The acquisition and mining of product feature data from online sources such as customer review websites and large scale social media networks is an emerging area of research. In many existing design methodologies that acquire product feature preferences form online sources, the underlying assumption is that product features expressed by customers are explicitly stated and readily observable to be mined using product feature extraction tools. In many scenarios however, product feature preferences expressed by customers are implicit in nature and do not directly map to engineering design targets. For example, a customer may implicitly state “wow I have to squint to read this on the screen”, when the explicit product feature may be a larger screen. The authors of this work propose an inference model that automatically assigns the most probable explicit product feature desired by a customer, given an implicit preference expressed. The algorithm iteratively refines its inference model by presenting a hypothesis and using ground truth data, determining its statistical validity. A case study involving smartphone product features expressed through Twitter networks is presented to demonstrate the effectiveness of the proposed methodology.


Author(s):  
N. Milisavljevic ◽  
D. Closson ◽  
F. Holecz ◽  
F. Collivignarelli ◽  
P. Pasquali

Land-cover changes occur naturally in a progressive and gradual way, but they may happen rapidly and abruptly sometimes. Very high resolution remote sensed data acquired at different time intervals can help in analyzing the rate of changes and the causal factors. In this paper, we present an approach for detecting changes related to disasters such as an earthquake and for mapping of the impact zones. The approach is based on the pieces of information coming from SAR (Synthetic Aperture Radar) and on their combination. The case study is the 22 February 2011 Christchurch earthquake. <br><br> The identification of damaged or destroyed buildings using SAR data is a challenging task. The approach proposed here consists in finding amplitude changes as well as coherence changes before and after the earthquake and then combining these changes in order to obtain richer and more robust information on the origin of various types of changes possibly induced by an earthquake. This approach does not need any specific knowledge source about the terrain, but if such sources are present, they can be easily integrated in the method as more specific descriptions of the possible classes. <br><br> A special task in our approach is to develop a scheme that translates the obtained combinations of changes into ground information. Several algorithms are developed and validated using optical remote sensing images of the city two days after the earthquake, as well as our own ground-truth data. The obtained validation results show that the proposed approach is promising.


Author(s):  
Marian Muste ◽  
Ton Hoitink

With a continuous global increase in flood frequency and intensity, there is an immediate need for new science-based solutions for flood mitigation, resilience, and adaptation that can be quickly deployed in any flood-prone area. An integral part of these solutions is the availability of river discharge measurements delivered in real time with high spatiotemporal density and over large-scale areas. Stream stages and the associated discharges are the most perceivable variables of the water cycle and the ones that eventually determine the levels of hazard during floods. Consequently, the availability of discharge records (a.k.a. streamflows) is paramount for flood-risk management because they provide actionable information for organizing the activities before, during, and after floods, and they supply the data for planning and designing floodplain infrastructure. Moreover, the discharge records represent the ground-truth data for developing and continuously improving the accuracy of the hydrologic models used for forecasting streamflows. Acquiring discharge data for streams is critically important not only for flood forecasting and monitoring but also for many other practical uses, such as monitoring water abstractions for supporting decisions in various socioeconomic activities (from agriculture to industry, transportation, and recreation) and for ensuring healthy ecological flows. All these activities require knowledge of past, current, and future flows in rivers and streams. Given its importance, an ability to measure the flow in channels has preoccupied water users for millennia. Starting with the simplest volumetric methods to estimate flows, the measurement of discharge has evolved through continued innovation to sophisticated methods so that today we can continuously acquire and communicate the data in real time. There is no essential difference between the instruments and methods used to acquire streamflow data during normal conditions versus during floods. The measurements during floods are, however, complex, hazardous, and of limited accuracy compared with those acquired during normal flows. The essential differences in the configuration and operation of the instruments and methods for discharge estimation stem from the type of measurements they acquire—that is, discrete and autonomous measurements (i.e., measurements that can be taken any time any place) and those acquired continuously (i.e., estimates based on indirect methods developed for fixed locations). Regardless of the measurement situation and approach, the main concern of the data providers for flooding (as well as for other areas of water resource management) is the timely delivery of accurate discharge data at flood-prone locations across river basins.


Sign in / Sign up

Export Citation Format

Share Document