Cloning and sequence analysis of complete cDNA of chitin deacetylase from Mucor racemosus

2007 ◽  
Vol 4 (2) ◽  
pp. 167-172 ◽  
Author(s):  
Jiang Xia-Yun ◽  
Zou Shu-Ming ◽  
Zhou Pei-Gen

AbstractA complete chitin deacetylase (CDA) complementary DNA (cDNA) from Mucor racemosus was cloned and sequenced by reverse transcription-polymerase chain reaction (RT-PCR) and rapid amplification cDNA end (RACE) with gene special conserved primers. The cDNA sequence was submitted to GenBank (DQ538514). The complete cDNA with full-length of 1506 bp contained a 67 bp 5′-untranslated region, an open reading frame of 1344 bp and 95 bp 3′-untranslated region including tailing site AATAAA. The gene encoded a sequence of 448 amino acid residues and consisted of core nucleotides encoding a polysaccharide deacetylase domain covering 32% of the entire sequence. The CDA gene shared sequence homology with those of several fungi. The corresponding homology of the deduced amino acid sequences varied from 21 to 69%. Phylogenetic analysis according to the deduced amino acid sequences matched the classical fungi taxonomy. The three-dimensional structure of this protein was predicted. The protein had a whole CDA functional domain and a polysaccharide deacetylase domain.

2005 ◽  
Vol 2 (1) ◽  
pp. 53-58
Author(s):  
Zhou Yue-Gang ◽  
Naoko Norioka ◽  
Li Shao-Liang ◽  
Shigemi Norioka

AbstractA pollen cDNA library of Japanese pear (Pyrus pyrifolia) from the family Rosaceae was constructed and a cDNA (bgn-1) of 1408 bp, which encodes a protein (BGN-1) secreted from growing pollen tubes, was cloned and sequenced. bgn-1 cDNA is composed of a 5′-untranslated region of 47 bp, an open reading frame of 1194 bp encoding 397 amino acid residues and a complete 3′-untranslated region of 167 bp. Alignment of the deduced amino acid sequence of bgn-1 with that of barley (Hordeum vulgare) β-1,3-glucanase (GII) showed 39.7% amino acid identity. Several residues that were critical for the function of GII were conserved in the deduced BGN-1 polypeptide. Moreover, hydrophobic cluster analysis (HCA) showed an overall HCA homology score of 87.1% and analysis of BGN-1 with the 3D-PSSM program predicted a three-dimensional structure of BGN-1 highly homologous to that of barley GII with ≥95% certainty. These results suggest that the cloned bgn-1 cDNA encodes a β-1,3-glucanase-like protein in Japanese pear. The predicted mature protein (375 amino acids) has a theoretical molecular mass of 40 723 Da, a basic pI of 9.59 and a diagnostic amino acid residue mode of D, L, S and L, which is very similar to that of growth-related subfamily D (D, L, S and Q) in cereals. A ProXXPro repeat is also found between positions 352 and 367 in the C-extension region.


2019 ◽  
Author(s):  
Kai Shimagaki ◽  
Martin Weigt

Statistical models for families of evolutionary related proteins have recently gained interest: in particular pairwise Potts models, as those inferred by the Direct-Coupling Analysis, have been able to extract information about the three-dimensional structure of folded proteins, and about the effect of amino-acid substitutions in proteins. These models are typically requested to reproduce the one- and two-point statistics of the amino-acid usage in a protein family, i.e. to capture the so-called residue conservation and covariation statistics of proteins of common evolutionary origin. Pairwise Potts models are the maximum-entropy models achieving this. While being successful, these models depend on huge numbers of ad hoc introduced parameters, which have to be estimated from finite amount of data and whose biophysical interpretation remains unclear. Here we propose an approach to parameter reduction, which is based on selecting collective sequence motifs. It naturally leads to the formulation of statistical sequence models in terms of Hopfield-Potts models. These models can be accurately inferred using a mapping to restricted Boltzmann machines and persistent contrastive divergence. We show that, when applied to protein data, even 20-40 patterns are sufficient to obtain statistically close-to-generative models. The Hopfield patterns form interpretable sequence motifs and may be used to clusterize amino-acid sequences into functional sub-families. However, the distributed collective nature of these motifs intrinsically limits the ability of Hopfield-Potts models in predicting contact maps, showing the necessity of developing models going beyond the Hopfield-Potts models discussed here.


1987 ◽  
Author(s):  
A Heckel ◽  
K M Hasselbach

Up to now the three-dimensional structure of t-PA or parts of this enzyme is unknown. Using computer graphical methods the spatial structure of the enzymatic part of t-PA is predicted on the hypothesis, the three-dimensional backbone structure of t-PA being similar to that of other serine proteases. The t-PA model was built up in three steps:1) Alignment of the t-PA sequence with other serine proteases. Comparison of enzyme structures available from Brookhaven Protein Data Bank proved elastase as a basis for modeling.2) Exchange of amino acids of elastase differing from the t-PA sequence. The replacement of amino acids was performed such that backbone atoms overlapp completely and side chains superpose as far as possible.3) Modeling of insertions and deletions. To determine the spatial arrangement of insertions and deletions parts of related enzymes such as chymotrypsin or trypsin were used whenever possible. Otherwise additional amino acid sequences were folded to a B-turn at the surface of the proteine, where all insertions or deletions are located. Finally the side chain torsion angles of amino acids were optimised to prevent close contacts of neigh bouring atoms and to improve hydrogen bonds and salt bridges.The resulting model was used to explain binding of arginine 560 of plasminogen to the active site of t-PA. Arginine 560 interacts with Asp 189, Gly 19 3, Ser 19 5 and Ser 214 of t-PA (chymotrypsin numbering). Furthermore interaction of chromo-genic substrate S 2288 with the active site of t-PA was studied. The need for D-configuration of the hydrophobic amino acid at the N-terminus of this tripeptide derivative could be easily explained.


1999 ◽  
Vol 65 (10) ◽  
pp. 4652-4658 ◽  
Author(s):  
Kohji Ohdan ◽  
Takashi Kuriki ◽  
Hiroki Kaneko ◽  
Jiro Shimada ◽  
Toshikazu Takada ◽  
...  

ABSTRACT Complete (Ba-L) and truncated (Ba-S) forms of α-amylases fromBacillus subtilis X-23 were purified, and the amino- and carboxyl-terminal amino acid sequences of Ba-L and Ba-S were determined. The amino acid sequence deduced from the nucleotide sequence of the α-amylase gene indicated that Ba-S was produced from Ba-L by truncation of the 186 amino acid residues at the carboxyl-terminal region. The results of genomic Southern analysis and Western analysis suggested that the two enzymes originated from the same α-amylase gene and that truncation of Ba-L to Ba-S occurred during the cultivation of B. subtilis X-23 cells. Although the primary structure of Ba-S was approximately 28% shorter than that of Ba-L, the two enzyme forms had the same enzymatic characteristics (molar catalytic activity, amylolytic pattern, transglycosylation ability, effect of pH on stability and activity, optimum temperature, and raw starch-binding ability), except that the thermal stability of Ba-S was higher than that of Ba-L. An analysis of the secondary structure as well as the predicted three-dimensional structure of Ba-S showed that Ba-S retained all of the necessary domains (domains A, B, and C) which were most likely to be required for functionality as α-amylase.


Author(s):  
Zhilong Tian ◽  
Yuqin Wang ◽  
Huibin Shi ◽  
Zhibo Wu ◽  
Xiaohui Zhang ◽  
...  

To further to understand the structure and function of the TAC1 gene, we cloned the full-length cDNAs of the TAC1 genes from goat by rapid amplification of cDNA ends-PCR and the qRT-PCR was used to analyze the TAC1 mRNA expression patterns of goat various tissues. The full-length cDNA of goat TAC1 was 1176 bp, with a 339 bp open reading frame encoding 112 amino acids. The amino acid sequence analysis revealed that goat TAC1 gene encoded a water-drain protein and its relative molecular weight and isoelectric point was 13,012.86 Da and 6.29 respectively. Alignment and phylogenetic analyses revealed that their amino acid sequences were highly similar to those of other vertebrates. TAC1 expression of the goat of the brain, cerebellum, medulla oblongata, heart, liver, spleen, lung, kidney, uterus, ovaries. These results serve as a foundation for further study on the Capra hircus TAC1 gene.


1996 ◽  
Vol 16 (2) ◽  
pp. 677-684 ◽  
Author(s):  
J A Prendergast ◽  
C Ptak ◽  
D Kornitzer ◽  
C N Steussy ◽  
R Hodgins ◽  
...  

The Cdc34 (Ubc3) ubiquitin-conjugating enzyme from Saccharomyces cerevisiae plays an essential role in the progression of cells from the G1 to S phase of the cell division cycle. Using a high-copy suppression strategy, we have identified a yeast gene (UBS1) whose elevated expression suppresses the conditional cell cycle defects associated with cdc34 mutations. The UBS1 gene encodes a 32.2-kDa protein of previously unknown function and is identical in sequence to a genomic open reading frame on chromosome II (GenBank accession number Z36034). Several lines of evidence described here indicate that Ubs1 functions as a general positive regulator of Cdc34 activity. First, overexpression of UBS1 suppresses not only the cell proliferation and morphological defects associated with cdc34 mutants but also the inability of cdc34 mutant cells to degrade the general amino acid biosynthesis transcriptional regulator, Gcn4. Second, deletion of the UBS1 gene profoundly accentuates the cell cycle defect when placed in combination with a cdc34 temperature-sensitive allele. Finally, a comparison of the Ubs1 and Cdc34 polypeptide sequences reveals two noncontiguous regions of similarity, which, when projected onto the three-dimensional structure of a ubiquitin-conjugating enzyme, define a single region situated on its surface. While cdc34 mutations corresponding to substitutions outside this region are suppressed by UBS1 overexpression, Ubs1 fails to suppress amino acid substitutions made within this region. Taken together with other findings, the allele specificity exhibited by UBS1 expression suggests that Ubs1 regulates Cdc34 by interaction or modification.


2010 ◽  
Vol 426 (3) ◽  
pp. 337-344 ◽  
Author(s):  
Sayaka Kitamura ◽  
Kosuke Fujishima ◽  
Asako Sato ◽  
Daisuke Tsuchiya ◽  
Masaru Tomita ◽  
...  

RNase H (ribonuclease H) is an endonuclease that cleaves the RNA strand of RNA–DNA duplexes. It has been reported that the three-dimensional structure of RNase H is similar to that of the PIWI domain of the Pyrococcus furiosus Ago (argonaute) protein, although the two enzymes share almost no similarity in their amino acid sequences. Eukaryotic Ago proteins are key components of the RNA-induced silencing complex and are involved in microRNA or siRNA (small interfering RNA) recognition. In contrast, prokaryotic Ago proteins show greater affinity for RNA–DNA hybrids than for RNA–RNA hybrids. Interestingly, we found that wild-type Pf-RNase HII (P. furiosus, RNase HII) digests RNA–RNA duplexes in the presence of Mn2+ ions. To characterize the substrate specificity of Pf-RNase HII, we aligned the amino acid sequences of Pf-RNase HII and Pf-Ago, based on their protein secondary structures. We found that one of the conserved secondary structural regions (the fourth β-sheet and the fifth α-helix of Pf-RNase HII) contains family-specific amino acid residues. Using a series of Pf-RNase HII–Pf-Ago chimaeric mutants of the region, we discovered that residues Asp110, Arg113 and Phe114 are responsible for the dsRNA (double-stranded RNA) digestion activity of Pf-RNase HII. On the basis of the reported three-dimensional structure of Ph-RNase HII from Pyrococcus horikoshii, we built a three-dimensional structural model of RNase HII complexed with its substrate, which suggests that these amino acids are located in the region that discriminates DNA from RNA in the non-substrate strand of the duplexes.


Functional studies on interferon would be helped by a three-dimensional structure for the molecule. However, it may be several years before the structure of the protein is determined by X-ray crystallography. We have therefore used available methods for predicting the secondary - and the tertiary - structure of a protein from its amino acid sequence to propose a tertiary model involving the packing of four a-helices. Details of this work have been published elsewhere (Sternberg & Cohen 1982).


2015 ◽  
Vol 71 (5) ◽  
pp. 1123-1135 ◽  
Author(s):  
Stefano Capaldi ◽  
Beniamino Faggion ◽  
Maria E. Carrizo ◽  
Laura Destefanis ◽  
Maria C. Gonzalez ◽  
...  

Carp FEL (fishelectin or fish-egg lectin) is a 238-amino-acid lectin that can be purified from fish eggs by exploiting its selective binding to Sepharose followed by elution withN-acetylglucosamine. Its amino-acid sequence and other biochemical properties have previously been reported. The glycoprotein has four disulfide bridges and the structure of the oligosaccharides linked to Asn27 has been described. Here, the three-dimensional structures of apo carp FEL (cFEL) and of its complex withN-acetylglucosamine determined by X-ray crystallography at resolutions of 1.35 and 1.70 Å, respectively, are reported. The molecule folds as a six-bladed β-propeller and internal short consensus amino-acid sequences have been identified in all of the blades. A calcium atom binds at the bottom of the funnel-shaped tunnel located in the centre of the propeller. Two ligand-binding sites, α and β, are present in each of the two protomers in the dimer. The first site, α, is closer to the N-terminus of the chain and is located in the crevice between the second and the third blades, while the second site, β, is located between the fourth and the fifth blades. The amino acids that participate in the contacts have been identified, as well as the conserved water molecules in all of the sites. Both sites can bind the two anomers, α and β, ofN-acetylglucosamine, as is clearly recognizable in the electron-density maps. The lectin presents sequence homology to members of the tachylectin family, which are known to have a function in the innate immune system of arthropods, and homologous genes are present in the genomes of other fish and amphibians. This structure is the first of a protein of this group and, given the degree of homology with other members of the family, it is expected that it will be useful to experimentally determine other crystal structures using the coordinates of cFEL as a search probe in molecular replacement.


Sign in / Sign up

Export Citation Format

Share Document