piwi domain
Recently Published Documents


TOTAL DOCUMENTS

20
(FIVE YEARS 4)

H-INDEX

8
(FIVE YEARS 0)

2021 ◽  
Author(s):  
Thibaut Hacquard ◽  
Marion Clavel ◽  
Patricia Baldrich ◽  
Esther Lechner ◽  
Imma Pérez-Salamó ◽  
...  

AbstractRNA silencing is a conserved mechanism in eukaryotes and is involved in development, heterochromatin maintenance and defense against viruses. In plants, ARGONAUTE1 (AGO1) protein plays a central role in both microRNA (miRNA) and small interfering RNA (siRNA)-directed silencing and its expression is regulated at multiple levels. Here, we report that the F-box protein FBW2 targets proteolysis of AGO1 by a CDC48-mediated mechanism. We found that FBW2 assembles an SCF complex that recognizes the MID-PIWI domain of AGO1 and requires its C-terminal domain containing a GW motif for AGO1 turnover. We showed that FBW2 prefers the unloaded and some mutated forms of AGO1 protein. WhileFBW2loss of function does not lead to strong growth or developmental defects, it significantly increases RNA silencing activity. Interestingly, under conditions in which small RNA production or accumulation is affected, the failure to degrade AGO1 infbw2mutants becomes more deleterious for the plant. Hence, the non-degradable AGO1 protein assembles high molecular weight complexes and binds illegitimate small RNA leading to the cleavage of new target genes that belong to stress responses and cellular metabolic processes. Therefore, the control of AGO1 homeostasis by ubiquitin ligases plays an important role in quality control to avoid off-target cleavage.



2021 ◽  
Author(s):  
Sejla Salic ◽  
Anna Sieber ◽  
Samir Barbaria ◽  
Anatoly Vasilyev ◽  
Elisavet Papadimou ◽  
...  

Argonautes are nucleases that can be programmed by short oligonucleotides to cleave complementary sequences. Here, we performed an unbiased bioinformatic search to mine bacterial genomes for prokaryotic Argonautes (pAgos) harboring a PIWI domain. Our search identified 3,033 pAgos in total, of which 1,464 portend to the subgroup of long pAgos with more than 600 amino acids. We purified a subset of 49 pAgos which were found in proximity to helicases and tested their nuclease activity in vitro. Ten of these were active towards single-stranded DNA substrates and this activity could be programmed by exogenous guide DNAs or RNAs. Cleavage of double-stranded plasmid DNA was much less readily observed and was fostered by elevated temperatures or exogenous addition of a DNA single-strand binding protein (ET-SSB). The efficiency of pAgo-mediated plasmid cleavage was dependent on the DNA target sequence as well as the surrounding sequence, suggesting that unwinding of the DNA double helix was a limiting factor. Intriguingly, we identified a cluster of pAgos from the Clostridial clade which was active at 37°C and activity was enhanced by exogenous ET-SSB. This suggests that Clostridial pAgos may be particularly suited to catalyze DNA double-strand cleavage and implies that such pAgos may be repurposed as gene editing tools in future.



2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Edvardas Golovinas ◽  
Danielis Rutkauskas ◽  
Elena Manakova ◽  
Marija Jankunec ◽  
Arunas Silanskas ◽  
...  

AbstractArgonaute (Ago) proteins are found in all three domains of life. The best-characterized group is eukaryotic Argonautes (eAgos), which are the core of RNA interference. The best understood prokaryotic Ago (pAgo) proteins are full-length pAgos. They are composed of four major structural/functional domains (N, PAZ, MID, and PIWI) and thereby closely resemble eAgos. It was demonstrated that full-length pAgos function as prokaryotic antiviral systems, with the PIWI domain performing cleavage of invading nucleic acids. However, the majority of identified pAgos are shorter and catalytically inactive (encode just MID and inactive PIWI domains), thus their action mechanism and function remain unknown. In this work we focus on AfAgo, a short pAgo protein encoded by an archaeon Archaeoglobus fulgidus. We find that in all previously solved AfAgo structures, its two monomers form substantial dimerization interfaces involving the C-terminal β-sheets. Led by this finding, we have employed various biochemical and biophysical assays, including SEC-MALS, SAXS, single-molecule FRET, and AFM, to show that AfAgo is indeed a homodimer in solution, which is capable of simultaneous interaction with two DNA molecules. This finding underscores the diversity of prokaryotic Agos and broadens the range of currently known Argonaute-nucleic acid interaction mechanisms.



2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Chen Wang ◽  
Haifan Lin

AbstractPIWI proteins, a subfamily of PAZ/PIWI Domain family RNA-binding proteins, are best known for their function in silencing transposons and germline development by partnering with small noncoding RNAs called PIWI-interacting RNAs (piRNAs). However, recent studies have revealed multifaceted roles of the PIWI-piRNA pathway in regulating the expression of other major classes of RNAs in germ cells. In this review, we summarize how PIWI proteins and piRNAs regulate the expression of many disparate RNAs, describing a highly complex global genomic regulatory relationship at the RNA level through which piRNAs functionally connect all major constituents of the genome in the germline.



2020 ◽  
Author(s):  
Edvardas Golovinas ◽  
Danielis Rutkauskas ◽  
Elena Manakova ◽  
Marija Jankunec ◽  
Arunas Silanskas ◽  
...  

Abstract Argonaute (Ago) proteins are found in all three domains of life. The best characterized group is eukaryotic Argonautes (eAgos), which are the core of RNA interference. The best understood prokaryotic Ago (pAgo) proteins are full-length pAgos. They are composed of four major structural/functional domains (N, PAZ, MID and PIWI) and thereby closely resemble eAgos. It was demonstrated that full-length pAgos function as prokaryotic antiviral systems, with the PIWI domain performing cleavage of invading nucleic acids. However, the majority of identified pAgos are shorter and catalytically inactive (encode just MID and inactive PIWI domains), thus their action mechanism and function remain unknown. In this work we focus on AfAgo, a short pAgo protein encoded by an archaeon Archaeoglobus fulgidus. We find that in all previously solved AfAgo structures, its two monomers form substantial dimerization interfaces involving the C-terminal β-sheets. Led by this finding, we have employed various biochemical and biophysical assays, including SEC-MALS, SAXS, single-molecule FRET and AFM, to show that AfAgo is indeed a homodimer in solution, which is capable of simultaneous interaction with two DNA molecules. This finding underscores the diversity of prokaryotic Agos and broadens the range of currently known Argonaute-nucleic acid interaction mechanisms.



2020 ◽  
Vol 117 (36) ◽  
pp. 22390-22401 ◽  
Author(s):  
Shuo Shi ◽  
Zhen-Zhen Yang ◽  
Sanhong Liu ◽  
Fan Yang ◽  
Haifan Lin

Targeted cancer therapy aims to achieve specific elimination of cancerous but not normal cells. Recently, PIWI proteins, a subfamily of the PAZ-PIWI domain (PPD) protein family, have emerged as promising candidates for targeted cancer therapy. PPD proteins are essential for small noncoding RNA pathways. The Argonaute subfamily partners with microRNA and small interfering RNA, whereas the PIWI subfamily partners with PIWI-interacting RNA (piRNA). Both PIWI proteins and piRNA are mostly expressed in the germline and best known for their function in transposon silencing, with no detectable function in mammalian somatic tissues. However, PIWI proteins become aberrantly expressed in multiple types of somatic cancers, thus gaining interest in targeted therapy. Despite this, little is known about the regulatory mechanism of PIWI proteins in cancer. Here we report that one of the four PIWI proteins in humans, PIWIL1, is highly expressed in gastric cancer tissues and cell lines. Knocking out the PIWIL1 gene (PIWIL1-KO) drastically reduces gastric cancer cell proliferation, migration, metastasis, and tumorigenesis. RNA deep sequencing of gastric cancer cell line SNU-1 reveals that KO significantly changes the transcriptome, causing the up-regulation of most of its associated transcripts. Surprisingly, few bona fide piRNAs exist in gastric cancer cells. Furthermore, abolishing the piRNA-binding activity of PIWIL1 does not affect its oncogenic function. Thus, PIWIL1 function in gastric cancer cells is independent of piRNA. This piRNA-independent regulation involves interaction with the UPF1-mediated nonsense-mediated mRNA decay (NMD) mechanism. Altogether, our findings reveal a piRNA-independent function of PIWIL1 in promoting gastric cancer.



2020 ◽  
Author(s):  
Edvardas Golovinas ◽  
Danielis Rutkauskas ◽  
Elena Manakova ◽  
Marija Jankunec ◽  
Arunas Silanskas ◽  
...  

ABSTRACTBackgroundArgonaute (Ago) proteins are found in all three domains of life. The best characterized group is eukaryotic Argonautes (eAgos), which are the core of RNA interference. The best understood prokaryotic Ago (pAgo) proteins are full-length pAgos. They are monomeric proteins, all composed of four major structural/functional domains (N, PAZ, MID and PIWI) and thereby closely resemble eAgos. It is believed that full-length pAgos function as prokaryotic antiviral systems, with the PIWI domain performing cleavage of invading nucleic acids. However, the majority of identified pAgos are shorter and catalytically inactive (encode just MID and inactive PIWI domains), thus their action mechanism and function remain unknown.ResultsIn this work we focus on AfAgo, a short pAgo protein encoded by an archaeon Archaeoglobus fulgidus. We find that in all previously solved AfAgo structures, its two monomers form substantial dimerization interfaces involving the C-terminal β-sheets. Led by this finding, we have employed various biochemical and biophysical assays, including single-molecule FRET, SAXS and AFM, to test the possible dimerization of AfAgo. SAXS results confirm that WT AfAgo, but not the dimerization surface mutant AfAgoΔ, forms a homodimer both in the apo-form and when bound to a nucleic acid. Single molecule FRET and AFM studies demonstrate that the dimeric WT AfAgo binds two ends of a linear DNA fragment, forming a relatively stable DNA loop.ConclusionOur results show that contrary to other characterized Ago proteins, AfAgo is a stable homodimer in solution, which is capable of simultaneous interaction with two DNA molecules. This finding broadens the range of currently known Argonaute-nucleic acid interaction mechanisms.



2019 ◽  
Author(s):  
KM Suen ◽  
F Braukmann ◽  
R Butler ◽  
D Bensaddek ◽  
A Akay ◽  
...  

SummaryMembraneless organelles are platforms for many aspects of RNA biology including small non-coding RNA (ncRNA) mediated gene silencing. How small ncRNAs utilise phase separated environments for their function is unclear. To address this question, we investigated how the PIWI-interacting RNA (piRNA) pathway engages with the membraneless organelle P granule inCaenorhabditis elegans. Proteomic analysis of the PIWI protein PRG-1 revealed an interaction with the constitutive P granule protein DEPS-1. Furthermore we identified a novel motif on DEPS-1, PBS, which interacts directly with the Piwi domain of PRG-1. This protein complex forms intertwining ultrastructures to build elongated condensatesin vivo. These sub-organelle ultrastructures depend on the Piwi-interacting motif of DEPS-1 and mediate piRNA function. Additionally, we identify a novel interactor of DEPS-1, EDG-1, which is required for DEPS-1 condensates to form correctly. We show that DEPS-1 is not required for piRNA biogenesis but piRNA function:deps-1mutants fail to produce the secondary endo-siRNAs required for the silencing of piRNA targets. Our study reveals how specific protein-protein interactions drive the spatial organisation and function of small RNA pathways within membraneless organelles.



2014 ◽  
Vol 5 (1) ◽  
Author(s):  
Xiaoming Zhang ◽  
DongDong Niu ◽  
Alberto Carbonell ◽  
Airong Wang ◽  
Angel Lee ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document