Characteristics of Two Forms of α-Amylases and Structural Implication

1999 ◽  
Vol 65 (10) ◽  
pp. 4652-4658 ◽  
Author(s):  
Kohji Ohdan ◽  
Takashi Kuriki ◽  
Hiroki Kaneko ◽  
Jiro Shimada ◽  
Toshikazu Takada ◽  
...  

ABSTRACT Complete (Ba-L) and truncated (Ba-S) forms of α-amylases fromBacillus subtilis X-23 were purified, and the amino- and carboxyl-terminal amino acid sequences of Ba-L and Ba-S were determined. The amino acid sequence deduced from the nucleotide sequence of the α-amylase gene indicated that Ba-S was produced from Ba-L by truncation of the 186 amino acid residues at the carboxyl-terminal region. The results of genomic Southern analysis and Western analysis suggested that the two enzymes originated from the same α-amylase gene and that truncation of Ba-L to Ba-S occurred during the cultivation of B. subtilis X-23 cells. Although the primary structure of Ba-S was approximately 28% shorter than that of Ba-L, the two enzyme forms had the same enzymatic characteristics (molar catalytic activity, amylolytic pattern, transglycosylation ability, effect of pH on stability and activity, optimum temperature, and raw starch-binding ability), except that the thermal stability of Ba-S was higher than that of Ba-L. An analysis of the secondary structure as well as the predicted three-dimensional structure of Ba-S showed that Ba-S retained all of the necessary domains (domains A, B, and C) which were most likely to be required for functionality as α-amylase.

1997 ◽  
Vol 321 (2) ◽  
pp. 531-536
Author(s):  
Takenori TAKAHATA ◽  
Shigeki TSUCHIDA ◽  
Masashi OOMURA ◽  
Takashi MATSUMOTO ◽  
Junichi AZUMI ◽  
...  

Although the three-dimensional structure of human glutathione transferase (GST) P1Ő1 crystallized with a GSH analogue has been reported, its structure in the non-complexed form has not been determined. Four monoclonal antibodies to GST P1Ő1 were produced to facilitate structural analysis. Of these, one, clone d-1 of IgG2a isotype, dose-dependently inhibited the activity of GST P1Ő1 but did not affect the activities of either GST A1Ő1 or M1Ő1. On immunoblotting, the antibody reacted strongly with GST P1Ő1 and weakly with rat GST-P and mouse GST-II, indicating cross-reactivity with Pi-class forms but preferential reactivity with GST P1Ő1. When GST P1Ő1 and the antibody were incubated in the presence of 60 ƁM GSH, no inhibition of activity was found, whereas 1-chloro-2,4-dinitrobenzene had no effect at concentrations up to 10 ƁM. The binding of GST P1Ő1 to antibody adsorbed to Protein AŐSepharose was also prevented by both 0.1 mM GSH and N-ethylmaleimide treatment. Trypsin digests of GST P1Ő1 were resolved by HPLC and a peptide that reacted with the antibody was detected by absorption experiments. N-Terminal amino acid sequencing revealed the peptide to be in the C-terminal portion of the enzyme, stretching from amino acid residues 198 to 208. A synthetic peptide of this sequence also absorbed the antibody. These results suggest that both GSH bound to the active site and N-ethylmaleimide bound to the cysteine residue repress antibody binding to the C-terminal region. Thus this antibody may be useful for examining the steric configuration of the C-terminal and other regions of GST P1Ő1 in the absence of GSH.


2019 ◽  
Author(s):  
Kai Shimagaki ◽  
Martin Weigt

Statistical models for families of evolutionary related proteins have recently gained interest: in particular pairwise Potts models, as those inferred by the Direct-Coupling Analysis, have been able to extract information about the three-dimensional structure of folded proteins, and about the effect of amino-acid substitutions in proteins. These models are typically requested to reproduce the one- and two-point statistics of the amino-acid usage in a protein family, i.e. to capture the so-called residue conservation and covariation statistics of proteins of common evolutionary origin. Pairwise Potts models are the maximum-entropy models achieving this. While being successful, these models depend on huge numbers of ad hoc introduced parameters, which have to be estimated from finite amount of data and whose biophysical interpretation remains unclear. Here we propose an approach to parameter reduction, which is based on selecting collective sequence motifs. It naturally leads to the formulation of statistical sequence models in terms of Hopfield-Potts models. These models can be accurately inferred using a mapping to restricted Boltzmann machines and persistent contrastive divergence. We show that, when applied to protein data, even 20-40 patterns are sufficient to obtain statistically close-to-generative models. The Hopfield patterns form interpretable sequence motifs and may be used to clusterize amino-acid sequences into functional sub-families. However, the distributed collective nature of these motifs intrinsically limits the ability of Hopfield-Potts models in predicting contact maps, showing the necessity of developing models going beyond the Hopfield-Potts models discussed here.


1987 ◽  
Author(s):  
A Heckel ◽  
K M Hasselbach

Up to now the three-dimensional structure of t-PA or parts of this enzyme is unknown. Using computer graphical methods the spatial structure of the enzymatic part of t-PA is predicted on the hypothesis, the three-dimensional backbone structure of t-PA being similar to that of other serine proteases. The t-PA model was built up in three steps:1) Alignment of the t-PA sequence with other serine proteases. Comparison of enzyme structures available from Brookhaven Protein Data Bank proved elastase as a basis for modeling.2) Exchange of amino acids of elastase differing from the t-PA sequence. The replacement of amino acids was performed such that backbone atoms overlapp completely and side chains superpose as far as possible.3) Modeling of insertions and deletions. To determine the spatial arrangement of insertions and deletions parts of related enzymes such as chymotrypsin or trypsin were used whenever possible. Otherwise additional amino acid sequences were folded to a B-turn at the surface of the proteine, where all insertions or deletions are located. Finally the side chain torsion angles of amino acids were optimised to prevent close contacts of neigh bouring atoms and to improve hydrogen bonds and salt bridges.The resulting model was used to explain binding of arginine 560 of plasminogen to the active site of t-PA. Arginine 560 interacts with Asp 189, Gly 19 3, Ser 19 5 and Ser 214 of t-PA (chymotrypsin numbering). Furthermore interaction of chromo-genic substrate S 2288 with the active site of t-PA was studied. The need for D-configuration of the hydrophobic amino acid at the N-terminus of this tripeptide derivative could be easily explained.


2001 ◽  
Vol 75 (15) ◽  
pp. 7184-7187 ◽  
Author(s):  
Anne Yvon-Groussin ◽  
Pierre Mugnier ◽  
Philippe Bertin ◽  
Marc Grandadam ◽  
Henri Agut ◽  
...  

ABSTRACT Human foamy virus (HFV), a retrovirus of simian origin which occasionally infects humans, is the basis of retroviral vectors in development for gene therapy. Clinical considerations of how to treat patients developing an uncontrolled infection by either HFV or HFV-based vectors need to be raised. We determined the susceptibility of the HFV to dideoxynucleosides and found that only zidovudine was equally efficient against the replication of human immunodeficiency virus type 1 (HIV-1) and HFV. By contrast, zalcitabine (ddC), lamivudine (3TC), stavudine (d4T), and didanosine (ddI) were 3-, 3-, 30-, and 46-fold less efficient against HFV than against HIV-1, respectively. Some amino acid residues known to be involved in HIV-1 resistance to ddC, 3TC, d4T, and ddI were found at homologous positions of HFV reverse transcriptase (RT). These critical amino acids are located at the same positions in the three-dimensional structure of HIV-1 and HFV RT, suggesting that both enzymes share common patterns of inhibition.


2010 ◽  
Vol 426 (3) ◽  
pp. 337-344 ◽  
Author(s):  
Sayaka Kitamura ◽  
Kosuke Fujishima ◽  
Asako Sato ◽  
Daisuke Tsuchiya ◽  
Masaru Tomita ◽  
...  

RNase H (ribonuclease H) is an endonuclease that cleaves the RNA strand of RNA–DNA duplexes. It has been reported that the three-dimensional structure of RNase H is similar to that of the PIWI domain of the Pyrococcus furiosus Ago (argonaute) protein, although the two enzymes share almost no similarity in their amino acid sequences. Eukaryotic Ago proteins are key components of the RNA-induced silencing complex and are involved in microRNA or siRNA (small interfering RNA) recognition. In contrast, prokaryotic Ago proteins show greater affinity for RNA–DNA hybrids than for RNA–RNA hybrids. Interestingly, we found that wild-type Pf-RNase HII (P. furiosus, RNase HII) digests RNA–RNA duplexes in the presence of Mn2+ ions. To characterize the substrate specificity of Pf-RNase HII, we aligned the amino acid sequences of Pf-RNase HII and Pf-Ago, based on their protein secondary structures. We found that one of the conserved secondary structural regions (the fourth β-sheet and the fifth α-helix of Pf-RNase HII) contains family-specific amino acid residues. Using a series of Pf-RNase HII–Pf-Ago chimaeric mutants of the region, we discovered that residues Asp110, Arg113 and Phe114 are responsible for the dsRNA (double-stranded RNA) digestion activity of Pf-RNase HII. On the basis of the reported three-dimensional structure of Ph-RNase HII from Pyrococcus horikoshii, we built a three-dimensional structural model of RNase HII complexed with its substrate, which suggests that these amino acids are located in the region that discriminates DNA from RNA in the non-substrate strand of the duplexes.


Sign in / Sign up

Export Citation Format

Share Document