Instability Modal Behavior of the Acoustically Excited Impinging Plane Jet With a Small Cylinder

2004 ◽  
Vol 20 (2) ◽  
pp. 145-157 ◽  
Author(s):  
Fei-Bin Hsiao ◽  
I-Che Hsu ◽  
Cheng-Chiang Hsu

AbstractThe Instability modal behavior of coherent structures in a jet-small cylinder impinging flow field is extensively studied by hot-wire anemometry measurements. The free jet is employed with a small cylinder of 3 mm in diameter located in the potential core region at the impinging length of L/H = 1.5 for the near field impingement and L/H = 4 for the far field impingement. The jet exit velocity is operated at 10 m/sec with the Reynolds number of 1.03 × 104 based on the nozzle exit width H = 15mm. The impinging jet is locally excited at the nozzle exit with varicose mode (m =0) and sinuous mode (m = 1) disturbances at the fundamental frequency of the natural jet flow. Data indicate that the jet flow is greatly altered and significantly enhanced by strengthening the coherent structures of the flow due to resonance according to the feedback mechanism. Although the original natural jet preferably exhibits the varicose mode, the strong sinuous mode is dominant in the flow field owing to the presence of the small cylinder in the potential core region. In the near field impingement, the wake region behind the cylinder preserves the pure sinuous mode to where the jet vortices merge and then mildly fades out. Whereas in the jet shear layer, the sinuous mode exists in the initial portion and gradually transforms to the varicose mode. In the far field impingement, the alternate mode dominates in each frequency stage in pure impinging case and the modal behavior follows the selected mode with the introducing acoustic waves in the acoustic excitation cases.

2011 ◽  
Vol 19 (03) ◽  
pp. 291-316 ◽  
Author(s):  
ALI UZUN ◽  
M. YOUSUFF HUSSAINI

This paper demonstrates an application of computational aeroacoustics to the prediction of noise generated by a round nozzle jet flow. In this study, the nozzle internal flow and the free jet flow outside are computed simultaneously by a high-order accurate, multi-block, large-eddy simulation (LES) code with overset grid capability. To simulate the jet flow field and its radiated noise, we solve the governing equations on approximately 370 million grid points using high-fidelity numerical schemes developed for computational aeroacoustics. Projection of the near-field noise to the far-field is accomplished by coupling the LES data with the Ffowcs Williams–Hawkings method. The main emphasis of these simulations is to compute the jet flow in sufficient detail to accurately capture the physical processes that lead to noise generation. Two separate simulations are performed using turbulent and laminar inflow conditions at the jet nozzle inlet. Simulation results are compared with the corresponding experimental measurements. Results show that nozzle inflow conditions have an influence on the jet flow field and far-field noise.


Author(s):  
S Elangovan ◽  
A Solaiappan ◽  
E Rathakrishnan

Twin non-parallel jet configurations occur in many practical devices like burners, combustion chambers, and also in the area of fluidics etc. Despite the importance of such configurations, studies on the interaction of twin non-parallel jets are very limited. The present work is an attempt to investigate the mixing of two axisymmetric jets obliquely oriented towards each other. Experimental studies were made on the interaction of twin intersecting axisymmetric jets issuing from two unventilated convergent nozzles. The nozzles of exit diameter (D) 10 mm were set on a common end wall with their axes intersecting each other at half angles (α3) of 0°, 5°, 10° and 15°. The centre-to-centre spacing (S) of the nozzles, non-dimensionalized, as S/D, was 3.1. The jet exit Mach number (Me) studied was 0.2. The results indicate that the near field characteristics are strongly influenced by α3. However, the potential core of the individual jets and the far field characteristics of the twin jet flow field, that is beyond downstream distances of 40 nozzle diameters, are not significantly influenced by α3. The cross-section of the jet just downstream of the combining point is approximately elliptic. The axis switching phenomenon normally associated with non-circular jets is observed in the jet flow field. The spread of the combined jet is more in the transverse direction than in the spanwise direction. Entrainment of the ambient fluid is found to be more in the case of twin parallel jets (α3 = 0°). The entrainment decreases with increasing α3. The self-preserving nature of the combined jet is almost independent of the initial geometric conditions. The combined jet is axisymmetric with regard to the normalized velocity and length scales.


2011 ◽  
Vol 52-54 ◽  
pp. 1388-1393
Author(s):  
Jun Tao ◽  
Gang Sun ◽  
Ying Hu ◽  
Miao Zhang

In this article, four observation points are selected in the flow field when predicting aerodynamic noise of a multi-element airfoil for both a coarser grid and a finer grid. Numerical simulation of N-S equations is employed to obtain near-field acoustic information, then far-field acoustic information is obtained through acoustic analogy theory combined with FW-H equation. Computation indicates: the codes calculate the flow field in good agreement with the experimental data; The finer the grid is, the more stable the calculated sound pressure level (SPL) is and the more regularly d(SPL)/d(St) varies.


2020 ◽  
Vol 5 (10) ◽  
pp. 1199-1203
Author(s):  
Md. Mosharrof Hossain ◽  
Muhammed Hasnain Kabir Nayeem ◽  
Dr. Md Abu Taher Ali

In this investigation experiment was carried out in 80 mm diameter swirling pipe jet, where swirl was generated by attaching wedge-shaped helixes in the pipe. All measurements were taken at Re 5.3e4. In the plain pipe jet the potential core was found to exist up to x/D=5 but in the swirling jet there was no existence of potential core. The mean velocity profiles were found to be influenced by the presence of wedge-shaped helixes in the pipe. The velocity profiles indicated the presence of sinusoidal flow field in the radial direction existed only in the near field of the jet. This flow field died out after x/D=3 and the existence of jet flow diminished after x/D=5.


2020 ◽  
Vol 142 (11) ◽  
Author(s):  
X. F. Wei ◽  
L. P. Chua ◽  
Z. B. Lu ◽  
H. D. Lim ◽  
R. Mariani ◽  
...  

Abstract Detailed near- and far-field acoustic measurements were conducted for two circular stepped nozzles with 30 deg and 60 deg design inclinations at over- and perfectly-expanded supersonic jet flow conditions and compared to those for a circular nonstepped nozzle. Far-field acoustic results show that stepped nozzles play an insignificant role in altering noise emissions at perfectly expanded condition. At an over-expanded condition, however, the longer stepped nozzle produces significant noise reductions at the sideline and upstream quadrants, while the shorter stepped nozzle does not. Noise spectra analysis and Schlieren visualizations show that noise reduction can be primarily attributed to mitigations in the broadband shock-associated noise (BSAN), due to the ability of the longer stepped nozzle in suppressing shock strengths at downstream region. Near-field acoustic measurements reveal that the source region, as well as the intensity of turbulent and shock noises, are highly sensitive to the stepped nozzle configuration. Furthermore, BSAN seems to be eliminated by the longer stepped nozzle in near-field region due to the shock structure modifications.


1982 ◽  
Vol 116 ◽  
pp. 379-391 ◽  
Author(s):  
Nagy S. Nosseir ◽  
Chih-Ming Ho

The aerodynamic noise generated by a subsonic jet impinging on a flat plate is studied from measurements of near-field and surface-pressure fluctuations. The far-field noise measured at 90° to the jet axis is found to be generated by two different physical mechanisms. One mechanism is the impinging of the large coherent structures on the plate, and the other is associated with the initial instability of the shear layer. These two sources of noise radiate to the far field via different acoustical paths.


1998 ◽  
Vol 357 ◽  
pp. 83-122 ◽  
Author(s):  
S. H. SMITH ◽  
M. G. MUNGAL

The mixing of the round jet normal to a uniform crossflow is studied for a range of jet-to-crossflow velocity ratios, r, from 5 to 25. Planar laser-induced fluorescence (PLIF) of acetone vapour seeded into the jet is used to acquire quantitative two-dimensional images of the scalar concentration field. Emphasis is placed on r=10 and r=20 and a few select images are acquired up to r=200. The Reynolds number based on the jet exit diameter, d, and the exit velocity varies from 8400 to 41 500. Images are acquired for conditions in which the product rd is held constant, requiring decreasing d for increasing r.Results from this experimental study concern structural events of the vortex interaction region, and mixing and mean centreline concentration decay in the near and far fields. The results cover all three regions of the transverse jet, and suggest that the jet scales with three length scales: d, rd and r2d.Events within the vortex interaction region display d-scaling, including the crossflow boundary layer separation and roll-up. Over the range of velocity ratios studied, the vortex interaction region shows r-dependent variations in the flow field, including the emergence of jet fluid in the wake structures for r>10 and a slower development of the counter-rotating vortex pair (CVP) in higher-r jets.The trajectory and physical dimension of the jet in both the near and far field display rd-scaling. The near field is characterized by a centreline concentration decay along the centreline coordinate s of s−1.3, different from the decay rate (s−1) of the free jet. When normalized by rd, the decay of each velocity-ratio jet branches away from the s−1.3 decay, approaching a decay of s−2/3, a rate predicted by modelling efforts. The branch points represent a transition in the flow field from enhanced mixing to reduced mixing compared to the free jet. When normalized by r2d, the branch points occur at a uniform jet position, s/r2d=0.3, which is viewed to be the division between the near and far fields. Self-similarity is not seen in the near field, but may be present in the far field.The view of the branch points as a place of transition in the flow is supported by the probability density function (p.d.f.) of concentration along the upper edge of the jet. Before the branch points, the p.d.f.s are non-marching in character, and after the branch points, they are tilted in character.Instantaneously, the CVP is asymmetric in shape and concentration. End views reveal extensive motion of the CVP and plan views show this motion can occur in both axisymmetric and sinusoidal motion. Ensemble-averaged images show the jet concentration is asymmetric about the centreline plane.


Sign in / Sign up

Export Citation Format

Share Document