Comparison of the environmental performance of different treatment scenarios for the main phosphorus recycling sources

2017 ◽  
Vol 34 (04) ◽  
pp. 349-362 ◽  
Author(s):  
Stefan Josef Hörtenhuber ◽  
Michaela Clarissa Theurl ◽  
Kurt Möller

AbstractEfficient phosphorus (P) recycling from rural and urban areas is becoming an increasing issue due to the scarcity of natural P deposits. Based on a life cycle assessment (LCA), we analyzed the environmental performance of 17 different P supply and recycling approaches from urban wastes, biosolids and slaughterhouse wastes compared with the two conventional inorganic fertilizers phosphate rock and triple superphosphate. The results show that many recycled P fertilizers (RPFs; e.g., digestates from urban organic wastes, biosolids and their ashes, meat and bone meal (MBM) and its recycling products) are competitive in terms of LCA results compared with conventional P fertilizers. For each of the P recycling sources, one or more treatment options were identified, which have more favorable LCA results than the conventional references. For sewage sludge, we found that direct application of the stabilized biosolids, and incineration with application of the ash showed the lowest LCA impacts per kg P; their treatments even generated net credits from added values. The same applies for the anaerobic digestion treatment of urban organic wastes. For MBM, low environmental impacts were identified for each of the analyzed treatment options, especially for anaerobic digestion, incineration, feeding with application of manure and direct application. Similarly, low environmental impacts and net credits were found for directly applied biomass ash. Some organically based RPFs demonstrate added values, i.e., as nitrogen and potassium fertilizer effect, energy gains during the treatment, or a humus sequestration potential. If these added values are considered in the LCAs, 11 out of 17 RPFs will have advantageous effects for the majority of addressed impact categories.

2021 ◽  
Author(s):  
◽  
Lydia Schreiber

Many municipal governments currently have goals in place to align with global efforts and policy to reduce greenhouse gas (GHGs) emissions and take advantage of waste as a resource for renewable energy and nutrients. To meet specified goals and targets, decisionmakers need data-driven analysis to understand both the costs and environmental impacts of their plans. This study develops a decision support tool applied in Columbia, Missouri, USA, with aims to model the economic and environmental tradeoffs in solid waste management decisions for the collection and treatment of food waste in the municipal solid waste stream while considering existing infrastructure and uncertainty in environmental impact data. The tool uses life cycle analysis environmental impact data from literature and cost data from case-studies to simulate both a FW collection route and the processing of FW through various potential and existing treatment options (anaerobic digestion, anaerobic co-digestion with sewage sludge, composting, landfilling, dry animal feed production, wet animal feed production). The model calculates the cost and greenhouse gas emissions of the transportation and treatment processes in each simulation. The tool can choose the best FW management scenario for the objective of minimizing cost or minimizing GHG emissions. Robust optimization incorporates uncertainty into the model by allowing environmental impacts for any FW treatment option to assume a maximum or minimum of a range of values from literature, representing the worst- and best-case values for environmental performance, respectively. Average case results indicate that a minimum cost scenario uses a combination of landfilling and composting FW that results in net positive GHG emissions. To minimize environmental impact, the average case results favor anaerobic digestion, a scenario which results in net negative GHG emissions. Compared to the minimum cost scenario, the transportation costs in the minimum impact scenario are similar, while the costs to treat the FW are nearly nine times higher. Robust results focus on variability in environmental impacts. In the model results, anaerobic digestion is favored when assuming its minimum environmental impact value but is outperformed by other options when anaerobic digestion assumes the maximum of its possible range. All considered options outperform landfilling, but the rankings among landfilling alternatives depend highly on assumptions regarding offsets estimated in life cycle assessment. Without any offsets, wet animal feed production is the best FW treatment solution. Environmental impact of transportation in this model is not influential. The results demonstrate the importance of model assumptions, uncertainty in life cycle GHG estimates, and consideration of existing infrastructure in determining the optimal scenarios.


2021 ◽  
Vol 13 (9) ◽  
pp. 4887
Author(s):  
Mulian Zheng ◽  
Wang Chen ◽  
Xiaoyan Ding ◽  
Wenwu Zhang ◽  
Sixin Yu

Preventive maintenance (PM) is regarded as the most economical maintenance strategy for asphalt pavement, but the life cycle environmental impacts (LCEI) of different PM techniques have not yet been comprehensively assessed and compared, thus hindering sustainable PM planning. This study aims to comprehensively estimate and compared the LCEI of five PM techniques then propose measures to reduce environmental impacts in PM design by using life cycle assessment (LCA), including fog seal with sand, micro-surfacing, composite seal, ultra-thin asphalt overlay, and thin asphalt overlay. Afterwards, ten kinds of LCEI categories and energy consumption of PM techniques were compared from the LCA phases, and inventory inputs perspectives, respectively. Results show that fog seal with sand and micro-surfacing can lower all LCEI scores by more than 50%. The environmental performance of five PM techniques provided by sensitivity analysis indicated that service life may not create significant impact on LCA results to some extent. Moreover, four PM combination plans were developed and compared for environmental performance, and results show that the PM plan only includes seal coat techniques that can reduce the total LCEI by 7–29% in pavement life. Increasing the frequency of seal coat techniques can make the PM plans more sustainable.


Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3411
Author(s):  
Clara Fernando-Foncillas ◽  
Maria M. Estevez ◽  
Hinrich Uellendahl ◽  
Cristiano Varrone

Wastewater and sewage sludge contain organic matter that can be valorized through conversion into energy and/or green chemicals. Moreover, resource recovery from these wastes has become the new focus of wastewater management, to develop more sustainable processes in a circular economy approach. The aim of this review was to analyze current sewage sludge management systems in Scandinavia with respect to resource recovery, in combination with other organic wastes. As anaerobic digestion (AD) was found to be the common sludge treatment approach in Scandinavia, different available organic municipal and industrial wastes were identified and compared, to evaluate the potential for expanding the resource recovery by anaerobic co-digestion. Additionally, a full-scale case study of co-digestion, as strategy for optimization of the anaerobic digestion treatment, was presented for each country, together with advanced biorefinery approaches to wastewater treatment and resource recovery.


2015 ◽  
Vol 2 (4) ◽  
pp. 136-144 ◽  
Author(s):  
Jessica L. Linville ◽  
Yanwen Shen ◽  
May M. Wu ◽  
Meltem Urgun-Demirtas

OENO One ◽  
2016 ◽  
Vol 50 (2) ◽  
Author(s):  
Anthony Rouault ◽  
Sandra Beauchet ◽  
Christel Renaud-Gentie ◽  
Frédérique Jourjon

<p style="text-align: justify;"><strong>Aims</strong>: Using Life Cycle Assessment (LCA), this study aims to compare the environmental impacts of two different viticultural technical management routes (TMRs); integrated and organic) and to identify the operations that contribute the most to the impacts.</p><p style="text-align: justify;"><strong>Methods and results</strong>: LCA impact scores were expressed in two functional units: 1 ha of cultivated area and 1 kg of collected grape. We studied all operations from field preparation before planting to the end-of-life of the vine. Inputs and outputs were transformed into potential environmental impacts thanks to SALCA™ (V1.02) and USETox™ (V1.03) methods. Plant protection treatments were a major cause of impact for both TMRs for fuel-related impact categories. For both TMRs, the main contributors to natural resource depletion and freshwater ecotoxicity were trellis system installation and background heavy metal emissions, respectively.</p><p style="text-align: justify;"><strong>Conclusion</strong>: This study shows that the studied organic TMR has higher impact scores than the integrated TMR for all the chosen impact categories except eutrophication. However, the chosen TMRs are only typical of integrated and organic viticulture in Loire Valley and some emission models (heavy metal, fuel-related emissions, and nitrogen emissions) have to be improved in order to better assess the environmental impacts of viticulture. Soil quality should also be integrated to LCA results in viticulture because this lack may be a disadvantage for organic viticulture.</p><strong>Significance and impact of study</strong>: This study is among the first to compare LCA results of an integrated and an organic TMR.


2021 ◽  
Vol 3 ◽  
Author(s):  
Eudald Casals ◽  
Raquel Barrena ◽  
Edgar Gonzalez ◽  
Xavier Font ◽  
Antoni Sánchez ◽  
...  

The addition of magnetic nanoparticles to batch anaerobic digestion was first reported in 2014. Afterwards, the number of works dealing with this subject has been increasing year by year. The discovery of the enhancement of anaerobic digestion by adding iron-based nanoparticles has created a multidisciplinary emerging research field. As a consequence, in the last years, great efforts have been made to understand the enhancement mechanisms by which magnetic nanoparticles (NPs) addition enhances the anaerobic digestion process of numerous organic wastes. Some hypotheses point to the dissolution of iron as essential iron for anaerobic digestion development, and the state of oxidation of iron NPs that can reduce organic matter to methane. The evolution and trends of this novel topic are discussed in this manuscript. Perspectives on the needed works on this topic are also presented.


Sign in / Sign up

Export Citation Format

Share Document