scholarly journals Varying tillage promotes weed diversity, while a perennial alfalfa–grass mixture promotes weed control in an organic tillage system experiment in Germany

Author(s):  
Meike Grosse ◽  
Thorsten Haase ◽  
Jürgen Heß

Abstract In organic farming the control of perennial weed species, in particular Cirsium arvense, can be a major concern for farmers, especially if there is no regulation through perennial forage production. To test whether the stubble cleaner (SC), an enhanced skim plow (PL), is as effective in the control of C. arvense and other weeds as conventional ploughing and perennial forage production, an organic field experiment was established. Three different tillage/crop rotation systems were compared: an SC system and a PL system, both in a cereal-based crop rotation and an additional PL system in a crop rotation that included a perennial alfalfa–grass mixture (PLALF). In the SC system, tillage was carried out solely with the SC, while in the PL and PLALF systems, ploughing was alternated with chiseling. In the fifth year, each main plot was divided into subplots, and seven different cover crop treatments were integrated into each of the three systems. The effects of the three systems and the cover crop treatments on weed cover and density, weed biomass, and weed diversity in the sixth and seventh year of the experiment are the subjects of this paper. The choice of cover crop species was of minor importance for weed control. The PLALF system was generally more effective in controlling C. arvense than the PL and SC systems. No significant differences between the PL and SC systems regarding the control of C. arvense could be identified in four of five assessments. The SC system had significantly higher total weed density than the PLALF and PL systems in both years. However, the differences in weed emergence between the PL and SC systems diminished until the assessment of weed cover and biomass in the main crops, when no significant differences between these two systems (2012) or no differences at all (2013) could be identified. Species richness was not significantly influenced by the tillage/crop rotation system in both years. Evenness and Shannon–Wiener index were significantly higher in the PLALF and PL systems than in the SC system on most assessment dates in 2012. In 2013 there was no clear trend regarding evenness and Shannon-Wiener index probably due to a hoeing operation.. In conclusion, for weed control, the choice of crop rotation was more important than the choice of tillage method, while for the diversity of the weed community, the choice of tillage method was more important than the crop rotation.

2017 ◽  
Vol 54 (5) ◽  
pp. 699-718 ◽  
Author(s):  
RENATO LARA DE ASSIS ◽  
ROGÉRIO SOARES DE FREITAS ◽  
STEPHEN C. MASON

SUMMARYPearl millet [Pennisetum glaucum (L.) R. Br.] is grown as a forage, cover and grain crop in Brazil. Historically, forage production has the most important use, but during the last 30 years, the use as a cover crop in no-till soybean [Glycine max (L.) Merrill] production systems has expanded greatly and is currently used on over 5 million ha. Grain production as livestock feed is presently of minor importance but expanding. This review cites 125 references and documents pearl millet research conducted in Brazil which is largely published in Portuguese. The review addresses recommended pearl millet production practices for different uses, including stand establishment, row spacing and plant population, fertiliser and pest management, and the use of pearl millet in rotation and as a cover crop between soybean or maize (Zea mays L.) production to reduce crop losses from nematode infestation. It is concluded that greater research investment in crop improvement, fertiliser and pest management, nematode management, and forage/grain utilisation is needed to fully take advantage of pearl millet to meet feed, food and soil improvement needs in Brazil. In addition, creation of a database on pearl millet production, marketing and utilisation to assist farmers and grain merchandisers, and increased extension programming on pearl millet production is needed.


2005 ◽  
Vol 34 (1) ◽  
pp. 21-26 ◽  
Author(s):  
Farah M.G. Héraux ◽  
Steven G. Hallett ◽  
Stephen C. Weller

2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 94-94
Author(s):  
Russell C Carrell ◽  
Sandra L Dillard ◽  
Mary K Mullenix ◽  
Audrey Gamble ◽  
Russ B Muntifering

Abstract Use of cool-season annual cover crops through grazing has been shown to be a potential tool in extending the grazing season, while still mitigating environmental risks associated with warm-season row crop production. Although data describing the effects of grazing on soil health are not novel, effects of grazing length on animal performance and cover crop production are limited. The objective was to determine cattle performance and forage production when grazing a cool-season annual cover-crop. Twelve, 1.2-ha pastures were established in a four species forage mix and randomly allocated to be grazed through either mid-February (FEB), mid-March (MAR), or mid-April (APR) with a non-grazed control (CON). Three tester steers were randomly placed in each paddock and a 1:1 forage allowance was maintained in each paddock using put-and-take steers. Animals were weighed every 30 d for determination of average daily gain (ADG). Forage was harvested bi-weekly and analyzed for forage production, neutral detergent fiber (NDF), and acid detergent fiber (ADF). Fiber fractions were measured using an ANKOM fiber analyzer (ANKOM Tech, Macedon, NY). All data were analyzed using MIXED procedure of SAS version 9.4 (SAS Inst., Cary, NC). Differences in forage mass were detected between CON and FEB (3,694.75 vs. 2,539.68 kg/ha; P < 0.003), CON and MAR (3,694.75 vs. 1,823.45 kg/ha; P < 0.001), and CON and APR (3,694.75 vs. 1,976.23 kg/ha; P < 0.001). Differences in total gain/acre were detected between APR and MAR (212.24 vs. 101.74 kg/ha; P < 0.0001), APR and FEB (212.24 vs 52.65 kg/ha; P < 0.0001), and FEB and MAR (101.74 vs. 52.65 kg/ha; P < 0.003). No differences were detected for tester ADG (1.23 kg/day, P = 0.56), NDF (44.9%, P = 0.99), or ADF (27.2%, P = 0.92) among treatments. These results indicate that cattle removal date effected forage yield and total gain/hectare.


2008 ◽  
Vol 318 (1-2) ◽  
pp. 169-184 ◽  
Author(s):  
H. Marjolein Kruidhof ◽  
Lammert Bastiaans ◽  
Martin J. Kropff

2013 ◽  
Vol 8 (1) ◽  
pp. 5 ◽  
Author(s):  
Vincenzo Tabaglio ◽  
Adriano Marocco ◽  
Margot Schulz
Keyword(s):  

2014 ◽  
Vol 47 (2) ◽  
pp. 29-40 ◽  
Author(s):  
S. Hassannejad ◽  
A.R. Mobli

Abstract In order to evaluate the effects of some cover crops on extinction coefficient and weed cover percentage in sunflower, a field experiment was conducted based on a randomized complete block design with nine treatments and three replicates at the Agricultural Research Station, Tabriz University of Iran, during growing season 2012-2013. Treatments were triticale, hairy vetch, rapeseed, triticale + hairy vetch, triticale + rapeseed, hairy vetch + rapeseed, application of trifluralin herbicide, and controls (weed infested and weed free without planting cover crop). Result indicated than once established, living mulches can rapidly occupy the open space between the rows of the main crop and use the light that would otherwise be available to weeds. In the all cover crops treatments, the light extinction coefficient was increased and weed cover percentage was reduced. Highest reduction in total weed species was observed in hairy vetch + rapeseed and triticale + rapeseed cover crop 61.92% and 61.43 %, respectively, compared to weed infested, so this treatment was better than trifluralin application. It concluded that cover crops could be considered as integrated strategies for weed sustainable management.


2012 ◽  
Vol 63 (2) ◽  
pp. 179-188 ◽  
Author(s):  
Cezary Kwiatkowski

A field experiment involving the cultivation of common valerian was conducted on loess soil in Abramów (Lublin region) in the period 2007-2009. Qualitative parameters of herbal raw material obtained from this plant as well as in-crop weed infestation were evaluated depending on the protection method and forecrop. Hand-weeded plots, in which a hand hoe was used, were the control. In the other treatments, weeds were controlled using various herbicides and a mechanical implement (brush weeder). Potato and winter wheat + field pea cover crop were the forecrops for common valerian crops. A hypothesis was made that the use of a brush weeder and herbicides not registered for application in valerian crops would have a positive effect on this plant's productivity and weed infestation in its crops. It was also assumed that the introduction of a cover crop would allow the elimination of differences in the forecrop value of the crop stands in question. The best quantitative and qualitative parameters of common valerian raw material as well as the largest reduction of incrop weed infestation were recorded after the application of the herbicides which were not type approved. The use of the brush weeder in the interrows also had a beneficial effect on productivity of the plant in question, but secondary weed infestation at the end of the growing season of common valerian turned out to be its disadvantage. Traditional crop protection methods used in common valerian crops were less effective in weed infestation reduction and they resulted in lower plant productivity and raw material quality. Potato proved to be a better forecrop for common valerian than winter wheat + field pea; however, this positive effect was not confirmed statistically. The following annual weeds: <i>Chenopodium album</i>, <i>Galinsoga parviflora</i>, <i>Stellaria media</i>, were predominant in the common valerian crop. Traditional weed control methods resulted in the dominance of some dicotyledonous weeds, such as <i>Viola arvensis</i>, <i>Galium aparine</i>, <i>Capsella bursa-pastoris</i>.


Author(s):  
Andris Lejiņš ◽  
Biruta Lejiņa

Buckwheat research has been carried out within the long-term crop rotation stationary that was established in 1969 as a part of the Research institute of Agriculture. Buckwheat proportion within the partcular crop rotations went up to 22%. The highest buckwheat yields were obtained from the buckwheat variants that where cultivated after winter rye, and within the buckwheat monoculture experimental plots. A considerable yield decrease was observed when cultivating buckwheat after potatoes. Weeds in the buckwheat sowing were effectively brought under control by the herbicide Butisane 400 (1.5 l ha-1), applied immediately after sowing and Betanal AM 2.5 l ha-1 after seedling in 2-3 leaves stage.


Weed Science ◽  
2015 ◽  
Vol 63 (1) ◽  
pp. 346-352 ◽  
Author(s):  
Nicholas E. Korres ◽  
Jason K. Norsworthy

Cover crops are becoming increasingly common in cotton as a result of glyphosate-resistant Palmer amaranth; hence, a field experiment was conducted in 2009 and 2010 in Marianna, AR, with a rye cover crop used to determine its effects on the critical period for weed control in cotton. Throughout most of the growing season, weed biomass in the presence of a rye cover crop was lesser than that in the absence of a rye cover crop. In 2009, in weeks 2 through 7 after planting, weed biomass was reduced at least twofold in the presence of a rye cover compared with the absence of rye. In 2009, in both presence and absence of a rye cover crop, weed removal needed to begin before weed biomass was 150 g m−2, or approximately 4 wk after planting, to prevent yield loss > 5%. Weed density was less in 2010 than in 2009, so weed removal was not required until 7 wk after planting, at which point weed biomass values were 175 and 385 g m−2in the presence and absence of a cover crop, respectively.


Sign in / Sign up

Export Citation Format

Share Document