scholarly journals Anatomy of the S255–S257 complex – triggered high-mass star formation

2006 ◽  
Vol 2 (S237) ◽  
pp. 160-164 ◽  
Author(s):  
V. Minier ◽  
N. Peretto ◽  
S. N. Longmore ◽  
M. G. Burton ◽  
R. Cesaroni ◽  
...  

AbstractWe present a multi-wavelength (NIR to radio) and multi-scale (1 AU to 10 pc) study of the S255–S257 complex of young high-mass (proto)stars. The complex consists of two evolved HII regions and a molecular gas filament in which new generations of high mass stars form. Four distinct regions are identified within this dusty filament: a young NIR/optical source cluster, a massive protostar binary, a (sub)millimetre continuum and molecular clump in global collapse and a reservoir of cold gas. Interestingly, the massive binary protostellar system is detected through methanol maser and mid-IR emission at the interface between the NIR cluster and the cold gas filament. The collapsing clump is located to the north of the NIR cluster and hosts a young high-mass star associated with an outflow that is observed in mid-IR, methanol maser and radio emission. We interpret this anatomy as the possible result of triggered star formation, starting with the formation of two HII regions, followed by the compression of a molecular gas filament in which a first generation of high-mass stars forms (the NIR cluster), which then triggers the formation of high mass protostars in its near environment (the massive protostellar binary). The global collapse of the northern clump might be due to both the expansion of the HII regions that squashes the filament. In conclusion, we witness the formation of four generations of clusters of high-mass stars in S255–S257.

Author(s):  
A. Chipman ◽  
S. P. Ellingsen ◽  
A. M. Sobolev ◽  
D. M. Cragg

AbstractWe have used the Australia Telescope Compact Array to search for a number of centimetre wavelength methanol transitions which are predicted to show weak maser emission towards star formation regions. Sensitive, high spatial, and spectral resolution observations towards four high-mass star formation regions which show emission in a large number of class II methanol maser transitions did not result in any detections. From these observations, we are able to place an upper limit of ≲ 1300 K on the brightness temperature of any emission from the 31A+–31A−, 17−2–18−3 E (vt = 1), 124–133 A−, 124–133 A+, and 41A+–41A− transitions of methanol in these sources on angular scales of 2 arcsec. This upper limit is consistent with current models for class II methanol masers in high-mass star formation regions and better constraints than those provided here will likely require observations with next-generation radio telescopes.


2000 ◽  
Vol 197 ◽  
pp. 113-124
Author(s):  
G. H. Macdonald ◽  
M. A. Thompson

Recent submillimetre observations of continuum radiation from warm dust and molecular line emission from hot gas in regions of high mass star formation are reviewed. Such regions are characterised by ultracompact HII regions around young OB stars and associated hot molecular cores which appear to harbour high mass protostars at an earlier stage of evolution.


2017 ◽  
Vol 13 (S336) ◽  
pp. 299-300 ◽  
Author(s):  
J. Yuan ◽  
J.-Z. Li ◽  
Y. Wu

AbstractG22 is a hub-filament system composed of four supercritical filaments. Velocity gradients are detected along three filaments. A total mass infall rate of 700 M⊙ Myr−1 would double the hub mass in about three free-fall times. The most massive clump C1 would be in global collapse with an infall velocity of 0.26 km s−1 and a mass infall rate of 5 × 10−4M⊙ yr−1, which is supported by the prevalent HCO+ (3-2) and 13CO (3-2) blue profiles. A hot molecular core (SMA1) was revealed in C1. At the SMA1 center, there is a massive protostar (MIR1) driving multipolar outflows which are associated with clusters of class I methanol masers. MIR1 may be still growing with an accretion rate of 7 × 10−5M⊙ yr−1. Filamentary flows, clump-scale collapse, core-scale accretion coexist in G22, suggesting that high-mass starless cores may not be prerequisite to form high-mass stars. In the high-mass star formation process, the central protostar, the core, and the clump can grow in mass simultaneously.


2012 ◽  
Vol 8 (S287) ◽  
pp. 133-140
Author(s):  
S. E. Kurtz

AbstractClass I 44 GHz methanol masers are not as well-known, as common, or as bright as their more famous Class II cousins at 6.7 and 12.2 GHz. Nevertheless, the 44 GHz masers are commonly found in high-mass star forming regions. At times they appear to trace dynamically important phenomena; at other times they show no obvious link to the star formation process. Here, we summarize the major observational efforts to date, including both dedicated surveys and collateral observations. The principal results are presented, some that were expected, and others that were unexpected.


2012 ◽  
Vol 8 (S292) ◽  
pp. 39-39
Author(s):  
S. L. Breen ◽  
S. P. Ellingsen

AbstractDetermining an evolutionary clock for high-mass star formation is an important step towards realizing a unified theory of star formation, as it will enable qualitative studies of the associated high-mass stars to be executed. Our recent studies have shown that masers have great potential to accurately trace the evolution of these regions. We have investigated the relative evolutionary phases associated with the presence of combinations of water, methanol and hydroxyl masers. Comparison between the characteristics of coincident sources has revealed strong evidence for an evolutionary sequence for the different maser species, a result that we now aim to corroborate through comparisons with chemical clocks.Using our new, large samples of methanol masers at 6.7 GHz (MMB survey; Green et al. (2009)) and 12.2 GHz (Breen et al. 2012), 22 GHz water masers (Breen & Ellingsen 2012), OH masers together with complementary data, we find strong evidence that it is not only the presence or absence of the different maser species that indicates the evolutionary stage of the associated high-mass star formation region (see e.g. Breen et al. (2010)), but that the properties of those masers can give even finer evolutionary details. Most notably, the intensity and velocity range of detected maser emission increases as the star forming region evolves (Breen et al. 2011).Subsequent work we have undertaken (Ellingsen et al. 2011) has shown that the presence of rare 37.7 GHz methanol masers may signal the end of the methanol maser phase. They show that 37.7 GHz methanol masers are associated only with the most luminous 6.7 and 12.2 GHz methanol masers, which combined with the rarity of these objects is consistent with them being a short lived phase towards the end of the 6.7 GHz methanol maser lifetime.An independent confirmation of our maser evolutionary timeline can be gained through comparisons with chemical clocks. MALT90 is a legacy survey of 1000s of dense star forming cores at 90GHz, simultaneously observing 16 molecular lines with the Mopra radio telescope (see e.g. Foster et al. 2011). It provides the perfect dataset to test the maser evolutionary timeline due to the targeted lines and the fact that at least one-quarter of the MALT90 sources correspond to maser sites, providing a large enough sample for meaningful analysis. From our preliminary analysis, we find that star formation regions showing similar maser properties also show similar thermal line properties; as would be expected if our evolutionary scenario were accurate.


2018 ◽  
Vol 611 ◽  
pp. A6 ◽  
Author(s):  
X. D. Tang ◽  
C. Henkel ◽  
F. Wyrowski ◽  
A. Giannetti ◽  
K. M. Menten ◽  
...  

Context. Formaldehyde (H2CO) is a reliable tracer to accurately measure the physical parameters of dense gas in star-forming regions. Aim. We aim to determine directly the kinetic temperature and spatial density with formaldehyde for the ~100 brightest ATLASGAL-selected clumps (the TOP100 sample) at 870 μm representing various evolutionary stages of high-mass star formation. Methods. Ten transitions (J = 3–2 and 4–3) of ortho- and para-H2CO near 211, 218, 225, and 291 GHz were observed with the Atacama Pathfinder EXperiment (APEX) 12 m telescope. Results. Using non-LTE models with RADEX, we derived the gas kinetic temperature and spatial density with the measured para-H2CO 321–220/303–202, 422–321/404–303, and 404–303/303–202 ratios. The gas kinetic temperatures derived from the para-H2CO 321–220/303–202 and 422–321/404–303 line ratios are high, ranging from 43 to >300 K with an unweighted average of 91 ± 4 K. Deduced Tkin values from the J = 3–2 and 4–3 transitions are similar. Spatial densities of the gas derived from the para-H2CO 404–303/303–202 line ratios yield 0.6–8.3 × 106 cm−3 with an unweighted average of 1.5 (±0.1) × 106 cm−3. A comparison of kinetic temperatures derived from para-H2CO, NH3, and dust emission indicates that para-H2CO traces a distinctly higher temperature than the NH3 (2, 2)/(1, 1) transitions and the dust, tracing heated gas more directly associated with the star formation process. The H2CO line widths are found to be correlated with bolometric luminosity and increase with the evolutionary stage of the clumps, which suggests that higher luminosities tend to be associated with a more turbulent molecular medium. It seems that the spatial densities measured with H2CO do not vary significantly with the evolutionary stage of the clumps. However, averaged gas kinetic temperatures derived from H2CO increase with time through the evolution of the clumps. The high temperature of the gas traced by H2CO may be mainly caused by radiation from embedded young massive stars and the interaction of outflows with the ambient medium. For Lbol/Mclump ≳ 10 L⊙/M⊙, we find a rough correlation between gas kinetic temperature and this ratio, which is indicative of the evolutionary stage of the individual clumps. The strong relationship between H2CO line luminosities and clump masses is apparently linear during the late evolutionary stages of the clumps, indicating that LH_2CO does reliably trace the mass of warm dense molecular gas. In our massive clumps H2CO line luminosities are approximately linearly correlated with bolometric luminosities over about four orders of magnitude in Lbol, which suggests that the mass of dense molecular gas traced by the H2CO line luminosity is well correlated with star formation.


2002 ◽  
Vol 206 ◽  
pp. 147-150
Author(s):  
Vincent Minier ◽  
Roy Booth ◽  
John Conway ◽  
Michele Pestalozzi

We summarise our recent VLBI observations of a large sample of methanol maser sources associated with high-mass star-forming regions.


Sign in / Sign up

Export Citation Format

Share Document