scholarly journals Simulating the dynamics of binary black holes in nuclear gaseous discs

2007 ◽  
Vol 3 (S245) ◽  
pp. 241-242
Author(s):  
Massimo Dotti ◽  
Monica Colpi ◽  
Francesco Haardt ◽  
Lucio Mayer

AbstractWe study the pairing of massive black holes embedded in a massive circum–nuclear, rotationally supported disc, until they form a close binary. Using high resolution SPH simulations, we follow the black hole dynamics, and in particular the eccentricity evolution, as a function of the composition in stars and gas of the disc. Binary–disc interaction always leads to orbital decay and, in case of co–rotating black holes, to orbit circularization. We present also a higher resolution simulation performed using the particle–splitting technique showing that the binary orbital decay is efficient down to a separation of ~ 0.1 pc, comparable to our new resolution limit. We detail the gaseous mass profile bound to each black hole. Double nuclear activity is expected to occur on an estimated timescale of ≲ 10 Myrs.

2016 ◽  
Vol 12 (S329) ◽  
pp. 118-125 ◽  
Author(s):  
Konstantin Postnov ◽  
Alexander Kuranov

AbstractPossible formation mechanisms of massive close binary black holes that can merge in the Hubble time to produce powerful gravitational wave bursts detected during advanced LIGO O1 science run are briefly discussed. The pathways include the evolution from field low-metallicity massive binaries, the dynamical formation in globular clusters and primordial black holes. Low effective black hole spins inferred for LIGO GW150914 and LTV151012 events are discussed. Population synthesis calculations of the expected spin and chirp mass distributions from the standard field massive binary formation channel are presented for different metallicities (from zero-metal Population III stars up to solar metal abundance). We conclude that that merging binary black holes can contain systems from different formation channels, discrimination between which can be made with increasing statistics of mass and spin measurements from ongoing and future gravitational wave observations.


2014 ◽  
Vol 12 (2) ◽  
pp. 159-166
Author(s):  
Predrag Jovanovic ◽  
Luka Popovic

Here we discuss the possible observational effects in the X-ray emission from two relativistic accretion disks in a supermassive binary black hole system. For that purpose we developed a model and performed numerical simulations of the X-ray radiation from a relativistic accretion disk around a supermassive black hole, based on the ray-tracing method in the Kerr metric, and applied it to the case of the close binary supermassive black holes. Our results indicate that the broad Fe K? line is a powerful tool for detecting such systems and studying their properties. The most favorable candidates for observational studies are the supermassive binary black holes in the galactic mergers during the phase when the orbital velocities of their components are very large and exceed several thousand kms -1.


1999 ◽  
Vol 186 ◽  
pp. 333-340
Author(s):  
Roeland P. van der Marel

The distribution of black hole (BH) masses M• in galaxies is constrained by photometric and kinematic studies of individual galaxies, and by the properties of the quasar population. I review our understanding of these topics, present new results of adiabatic BH growth models for HST photometry of elliptical galaxies with brightness profiles of the ‘core’ type, and discuss the implications of ground-based stellar kinematical data. It is not yet possible to uniquely determine the BH mass distribution, but the available evidence is not inconsistent with a picture in which: (i) a majority of galaxies has BHs; (ii) there is a correlation (with large scatter) between M• and spheroid luminosity Lsph of the form M• ≈ 10−2Lsph (solar B-band units); and (iii) the BHs formed in a quasar phase through mass accretion with efficiency ε ≈ 0.05.


2019 ◽  
Vol 15 (S356) ◽  
pp. 369-369
Author(s):  
Michael Kreter

AbstractBlazars are powered by super-massive black holes at their centers and are known for extreme variability on timescales from minutes to years. In case of a binary black hole system, this duality is traceable as periodic modulation of their MeV to GeV emission. So far, no high-significance periodicity has been found with standard approaches. We developed a method to search for periodic patterns in Fermi/LAT light curves, using information field theory (IFT). IFT is a formulation of Bayesian statistics in terms of fields. Bayesian statistics is ideal for the problem at hand since the data is incomplete, irregularly sampled and obeys non-Gaussian statistics such that common least-squares methods do not apply. We present a proof of principle of this method, analyzing a sample of promising binary black hole candidates like PG 1553 + 113 and Mrk 501.


2019 ◽  
Vol 15 (S356) ◽  
pp. 143-143
Author(s):  
Jaya Maithil ◽  
Michael S. Brotherton ◽  
Bin Luo ◽  
Ohad Shemmer ◽  
Sarah C. Gallagher ◽  
...  

AbstractActive Galactic Nuclei (AGN) exhibit multi-wavelength properties that are representative of the underlying physical processes taking place in the vicinity of the accreting supermassive black hole. The black hole mass and the accretion rate are fundamental for understanding the growth of black holes, their evolution, and the impact on the host galaxies. Recent results on reverberation-mapped AGNs show that the highest accretion rate objects have systematic shorter time-lags. These super-Eddington accreting massive black holes (SEAMBHs) show BLR size 3-8 times smaller than predicted by the Radius-Luminosity (R-L) relationship. Hence, the single-epoch virial black hole mass estimates of highly accreting AGNs have an overestimation of a factor of 3-8 times. SEAMBHs likely have a slim accretion disk rather than a thin disk that is diagnostic in X-ray. I will present the extreme X-ray properties of a sample of dozen of SEAMBHs. They indeed have a steep hard X-ray photon index, Γ, and demonstrate a steeper power-law slope, ασx.


1997 ◽  
Vol 163 ◽  
pp. 620-625 ◽  
Author(s):  
H. Ford ◽  
Z. Tsvetanov ◽  
L. Ferrarese ◽  
G. Kriss ◽  
W. Jaffe ◽  
...  

AbstractHST images have led to the discovery that small (r ~ 1″ r ~ 100 – 200 pc), well-defined, gaseous disks are common in the nuclei of elliptical galaxies. Measurements of rotational velocities in the disks provide a means to measure the central mass and search for massive black holes in the parent galaxies. The minor axes of these disks are closely aligned with the directions of the large–scale radio jets, suggesting that it is angular momentum of the disk rather than that of the black hole that determines the direction of the radio jets. Because the disks are directly observable, we can study the disks themselves, and investigate important questions which cannot be directly addressed with observations of the smaller and unresolved central accretion disks. In this paper we summarize what has been learned to date in this rapidly unfolding new field.


Universe ◽  
2019 ◽  
Vol 5 (6) ◽  
pp. 145 ◽  
Author(s):  
David Garofalo ◽  
Damian J. Christian ◽  
Andrew M. Jones

By exploring more than sixty thousand quasars from the Sloan Digital Sky Survey Data Release 5, Steinhardt & Elvis discovered a sub-Eddington boundary and a redshift-dependent drop-off at higher black hole mass, possible clues to the growth history of massive black holes. Our contribution to this special issue of Universe amounts to an application of a model for black hole accretion and jet formation to these observations. For illustrative purposes, we include ~100,000 data points from the Sloan Digital Sky Survey Data Release 7 where the sub-Eddington boundary is also visible and propose a theoretical picture that explains these features. By appealing to thin disk theory and both the lower accretion efficiency and the time evolution of jetted quasars compared to non-jetted quasars in our “gap paradigm”, we explain two features of the sub-Eddington boundary. First, we show that a drop-off on the quasar mass-luminosity plane for larger black hole mass occurs at all redshifts. But the fraction of jetted quasars is directly related to the merger function in this paradigm, which means the jetted quasar fraction drops with decrease in redshift, which allows us to explain a second feature of the sub-Eddington boundary, namely a redshift dependence of the slope of the quasar mass–luminosity boundary at high black hole mass stemming from a change in radiative efficiency with time. We are able to reproduce the mass dependence of, as well as the oscillating behavior in, the slope of the sub-Eddington boundary as a function of time. The basic physical idea involves retrograde accretion occurring only for a subset of the more massive black holes, which implies that most spinning black holes in our model are prograde accretors. In short, this paper amounts to a qualitative overview of how a sub-Eddington boundary naturally emerges in the gap paradigm.


2018 ◽  
Vol 14 (S346) ◽  
pp. 426-432
Author(s):  
Y. Qin ◽  
T. Fragos ◽  
G. Meynet ◽  
P. Marchant ◽  
V. Kalogera ◽  
...  

AbstractThe six LIGO detections of merging black holes (BHs) allowed to infer slow spin values for the two pre-merging BHs. The three cases where the spins of the BHs can be determined in high-mass X-ray binaries (HMXBs) show that those BHs have high spin values. We discuss here scenarios explaining these differences in spin properties in these two classes of object.


2012 ◽  
Vol 8 (S295) ◽  
pp. 56-56 ◽  
Author(s):  
R. Falomo ◽  
E. P. Farina ◽  
R. Decarli ◽  
A. Treves ◽  
J. Kotilainen

AbstractWe investigate the MgII 2800 and CIV 1540 absorption features of the gas in the halo of a foreground QSO through the absorption imprinting on the spectra of a background QSO that is closely aligned with the nearest quasar. We present the results for 13 QSO pairs (0.7 < z < 2.2) that allow us to probe the gas at distances between 60 kpc and 120 kpc from the QSO nucleus. We identify absorption features associated with the foreground QSO in 7 out of 10 systems for MgII, and one out of 3 for CIV (see example in Fig. 1). At variance with the case of inactive and less massive galaxies we find that relatively strong (EW ~ 1 Ang) absorption features are present out to a radius of 100 kpc. This suggests that a large extended halo is associated with massive galaxies.The comparison of these results with those for inactive (not hosting active black holes) galaxies (see e.g. Chen et al. 2010a) shows that the halo of QSOs is similar to that of inactive galaxies. In the observed sample we do not detect a significant enhancement of the absorption strengths, as it could be expected if the QSO nuclear activity were driven by intense gas accretion onto the black hole. Moreover along the line of sight of the QSO we do not detect any Mg II absorbers of the same strength of the transverse one. These results are in agreement with models that consider a non-isotropic emission of the QSO, which are hosted by massive gaseous halos.


Sign in / Sign up

Export Citation Format

Share Document