scholarly journals Reconciling the Metallicity Distributions of Gamma-ray Burst, Damped Lyman-α, and Lyman-break Galaxies atz≈ 3

2008 ◽  
Vol 4 (S254) ◽  
pp. 41-48
Author(s):  
Johan P. U. Fynbo ◽  
J. Xavier Prochaska ◽  
Jesper Sommer-Larsen ◽  
Miroslava Dessauges-Zavadsky ◽  
Palle Møller

AbstractWe test the hypothesis that the host galaxies of long-duration gamma-ray bursts (GRBs) as well as quasar-selected damped Lyman-α (DLA) systems are drawn from the population of UV-selected star-forming, highzgalaxies (generally referred to as Lyman-break galaxies). Specifically, we compare the metallicity distributions of the GRB and DLA populations against simple disk models where these galaxies are drawn randomly from the distribution of star-forming galaxies according to their star-formation rate and HI cross-section respectively. We find that it is possible to match both observational distributions assuming very simple and constrained relations between luminosity, metallicity, metallicity gradients and HI sizes. The simple model can be tested by observing the luminosity distribution of GRB host galaxies and by measuring the luminosity and impact parameters of DLA selected galaxies as a function of metallicity. Our results support the expectation that GRB and DLA samples, in contrast with magnitude limited surveys, provide an almost complete census of star-forming galaxies atz≈ 3.

2019 ◽  
Vol 623 ◽  
pp. A26 ◽  
Author(s):  
J. T. Palmerio ◽  
S. D. Vergani ◽  
R. Salvaterra ◽  
R. L. Sanders ◽  
J. Japelj ◽  
...  

Aims. Long gamma-ray bursts (LGRB) have been proposed as promising tracers of star formation owing to their association with the core-collapse of massive stars. Nonetheless, previous studies we carried out at z <  1 support the hypothesis that the conditions necessary for the progenitor star to produce an LGRB (e.g. low metallicity), were challenging the use of LGRBs as star-formation tracers, at least at low redshift. The goal of this work is to characterise the population of host galaxies of LGRBs at 1 < z < 2, investigate the conditions in which LGRBs form at these redshifts and assess their use as tracers of star formation. Methods. We performed a spectro-photometric analysis to determine the stellar mass, star formation rate, specific star formation rate and metallicity of the complete, unbiased host galaxy sample of the Swift/BAT6 LGRB sample at 1 < z < 2. We compared the distribution of these properties to the ones of typical star-forming galaxies from the MOSDEF and COSMOS2015 Ultra Deep surveys, within the same redshift range. Results. We find that, similarly to z <  1, LGRBs do not directly trace star formation at 1 < z < 2, and they tend to avoid high-mass, high-metallicity host galaxies. We also find evidence for an enhanced fraction of starbursts among the LGRB host sample with respect to the star-forming population of galaxies. Nonetheless we demonstrate that the driving factor ruling the LGRB efficiency is metallicity. The LGRB host distributions can be reconciled with the ones expected from galaxy surveys by imposing a metallicity upper limit of logOH ∼ 8.55. We can determine upper limits on the fraction of super-solar metallicity LGRB host galaxies of ∼20%, 10% at z <  1, 1 <  z <  2, respectively. Conclusions. Metallicity rules the LGRB production efficiency, which is stifled at Z ≳ 0.7 Z⊙. Under this hypothesis we can expect LGRBs to trace star formation at z >  3, once the bulk of the star forming galaxy population are characterised by metallicities below this limit. The role played by metallicity can be explained by the conditions necessary for the progenitor star to produce an LGRB. The moderately high metallicity threshold found is in agreement with the conditions necessary to rapidly produce a fast-rotating Wolf-Rayet stars in close binary systems, and could be accommodated by single star models under chemically homogeneous mixing with very rapid rotation and weak magnetic coupling.


Author(s):  
D Watson ◽  
J.P.U Fynbo ◽  
C.C Thöne ◽  
J Sollerman

There is strong evidence that long-duration gamma-ray bursts (GRBs) are produced during the collapse of a massive star. In the standard version of the collapsar model, a broad-lined and luminous Type Ic core-collapse supernova (SN) accompanies the GRB. This association has been confirmed in observations of several nearby GRBs. Recent observations show that some long-duration GRBs are different. No SN emission accompanied the long-duration GRBs 060505 and 060614 down to limits fainter than any known Type Ic SN and hundreds of times fainter than the archetypal SN 1998bw that accompanied GRB 980425. Multi-band observations of the early afterglows, as well as spectroscopy of the host galaxies, exclude the possibility of significant dust obscuration. Furthermore, the bursts originated in star-forming galaxies, and in the case of GRB 060505, the burst was localized to a compact star-forming knot in a spiral arm of its host galaxy. We find that the properties of the host galaxies, the long duration of the bursts and, in the case of GRB 060505, the location of the burst within its host, all imply a massive stellar origin. The absence of an SN to such deep limits therefore suggests a new phenomenological type of massive stellar death.


2020 ◽  
Vol 641 ◽  
pp. A30
Author(s):  
J.-B. Vielfaure ◽  
S. D. Vergani ◽  
J. Japelj ◽  
J. P. U. Fynbo ◽  
M. Gronke ◽  
...  

Context. The identification of the sources that reionized the Universe and their specific contribution to this process are key missing pieces of our knowledge of the early Universe. Faint star-forming galaxies may be the main contributors to the ionizing photon budget during the epoch of reionization, but their escaping photons cannot be detected directly due to inter-galactic medium opacity. Hence, it is essential to characterize the properties of faint galaxies with significant Lyman continuum (LyC) photon leakage up to z ∼ 4 to define indirect indicators allowing analogs to be found at the highest redshift. Aims. Long gamma-ray bursts (LGRBs) typically explode in star-forming regions of faint, star-forming galaxies. Through LGRB afterglow spectroscopy it is possible to detect directly LyC photons. Our aim is to use LGRBs as tools to study LyC leakage from faint, star-forming galaxies at high redshift. Methods. Here we present the observations of LyC emission in the afterglow spectra of GRB 191004B at z = 3.5055, together with those of the other two previously known LyC-leaking LGRB host galaxies (GRB 050908 at z = 3.3467, and GRB 060607A at z = 3.0749), to determine their LyC escape fraction and compare their properties. Results. From the afterglow spectrum of GRB 191004B we determine a neutral hydrogen column density at the LGRB redshift of log(NH I/cm−2) = 17.2 ± 0.15, and negligible extinction (AV = 0.03 ± 0.02 mag). The only metal absorption lines detected are C IV and Si IV. In contrast to GRB 050908 and GRB 060607A, the host galaxy of GRB 191004B displays significant Lyman-alpha (Lyα) emission. From its Lyα emission and the non-detection of Balmer emission lines we constrain its star-formation rate (SFR) to 1 ≤ SFR ≤ 4.7 M⊙ yr−1. We fit the Lyα emission with a shell model and find parameters values consistent with the observed ones. The absolute (relative) LyC escape fractions we find for GRB 191004B, GRB 050908 and GRB 060607A are of 0.35−0.11+0.10 (0.43−0.13+0.12), 0.08−0.04+0.05 (0.08−0.04+0.05) and 0.20−0.05+0.05 (0.45−0.15+0.15), respectively. We compare the LyC escape fraction of LGRBs to the values of other LyC emitters found from the literature, showing that LGRB afterglows can be powerful tools to study LyC escape for faint high-redshift star-forming galaxies. Indeed we could push LyC leakage studies to much higher absolute magnitudes. The host galaxies of the three LGRBs presented here have all M1600 >  −19.5 mag, with the GRB 060607A host at M1600 >  −16 mag. LGRB hosts may therefore be particularly suitable for exploring the ionizing escape fraction in galaxies that are too faint or distant for conventional techniques. Furthermore, the time involved is minimal compared to galaxy studies.


2015 ◽  
Vol 11 (A29B) ◽  
pp. 249-250
Author(s):  
Susanna D. Vergani ◽  

AbstractLong gamma-ray bursts (LGRBs) are associated to the deaths of massive stars and could thus be used as a potentially powerful tool to trace cosmic star formation. However the conditions needed to produce a LGRBs may introduce a bias in the LGRB rate versus star formation rate (SFR) relation (called LGRB efficiency hereafter).We have undertaken a study of the properties of the host galaxies of the BAT6 complete sample of LGRB to improve our knowledge on the LGRB efficiency, its redshift evolution, and the factor affecting it. This is the base to properly use LGRBs as SFR tracers.We show that at z < 1 LGRBs are not direct SFR tracers because they tend to avoid high-metallicity galaxies. The use of the BAT6 complete sample keeps this result from being affected by possible biases that could have influenced past results based on incomplete samples. The preference for low (but not extremely low) metallicities can be a consequence of the particular conditions needed for the progenitor star to produce a GRB.


2019 ◽  
Vol 490 (4) ◽  
pp. 5366-5374
Author(s):  
A Melandri ◽  
D B Malesani ◽  
L Izzo ◽  
J Japelj ◽  
S D Vergani ◽  
...  

ABSTRACT The number of supernovae known to be connected with long-duration gamma-ray bursts (GRBs) is increasing and the link between these events is no longer exclusively found at low redshift (z ≲ 0.3) but is well established also at larger distances. We present a new case of such a liaison at z = 0.33 between GRB 171010A and SN 2017htp. It is the second closest GRB with an associated supernova of only three events detected by Fermi-LAT. The supernova is one of the few higher redshift cases where spectroscopic observations were possible and shows spectral similarities with the well-studied SN 1998bw, having produced a similar Ni mass ($M_{\rm Ni}=0.33\pm 0.02 ~\rm {M_{\odot }}$) with slightly lower ejected mass ($M_{\rm ej}=4.1\pm 0.7~\rm {M_{\odot }}$) and kinetic energy ($E_{\rm K} = 8.1\pm 2.5 \times 10^{51} ~\rm {erg}$). The host-galaxy is bigger in size than typical GRB host galaxies, but the analysis of the region hosting the GRB revealed spectral properties typically observed in GRB hosts and showed that the progenitor of this event was located in a very bright H ii region of its face-on host galaxy, at a projected distance of ∼ 10 kpc from its galactic centre. The star-formation rate (SFRGRB ∼ 0.2 M⊙ yr−1) and metallicity (12  + log(O/H) ∼8.15 ± 0.10) of the GRB star-forming region are consistent with those of the host galaxies of previously studied GRB–SN systems.


2012 ◽  
Vol 8 (S292) ◽  
pp. 190-190
Author(s):  
J. M. Chen ◽  
L. W. Jia ◽  
E. W. Liang

AbstractGRBs are the most luminous events in the Universe. They are detectable from local to high-z universe and may serve as probes for high-z galaxies (e.g., Savaglio et al. 2009; Kewley & Dopita 2002). We compile the observations for 61 GRB host galaxies from literature. Their redshifts range from 0.0085 to 6.295. We present the statistical properties of the GRB host galaxies, including the stellar mass (M*), star-forming rate (SFR), metallicity (Z), extinction (AV), and neutral hydrogen column density (NH). We explore possible correlations among the properties of gamma-ray burst host galaxies and their cosmic evolution with observations of 61 GRB host galaxies. Our results are shown in Figure 1. A clear Z-M* relation is found in our sample, which is Z ~ M0.4. The host galaxies of local GRBs with detection of accompanied supernovae also share the same relation with high-z GRB host galaxies. A trend that a more massive host galaxy tends to have a higher star-formation rate is found. The best linear fit gives a tentative relation, i.e, SFR ~ M0.75. No any correlation is found between AV and NH. A GRB host galaxy at a higher redshift also tends to have a higher SFR. Even in the same redshift, the SFR may vary over three orders of magnitude. The metallicity of the GRB host galaxies is statistically higher than that of the QSO DLAs. The full version of our results please refer to Chen et al. (2012).


Author(s):  
N. R. Tanvir ◽  
E. Le Floc’h ◽  
L. Christensen ◽  
J. Caruana ◽  
R. Salvaterra ◽  
...  

AbstractAt peak, long-duration gamma-ray bursts are the most luminous sources of electromagnetic radiation known. Since their progenitors are massive stars, they provide a tracer of star formation and star-forming galaxies over the whole of cosmic history. Their bright power-law afterglows provide ideal backlights for absorption studies of the interstellar and intergalactic medium back to the reionization era. The proposed THESEUS mission is designed to detect large samples of GRBs at z > 6 in the 2030s, at a time when supporting observations with major next generation facilities will be possible, thus enabling a range of transformative science. THESEUS will allow us to explore the faint end of the luminosity function of galaxies and the star formation rate density to high redshifts; constrain the progress of re-ionisation beyond $z\gtrsim 6$ z ≳ 6 ; study in detail early chemical enrichment from stellar explosions, including signatures of Population III stars; and potentially characterize the dark energy equation of state at the highest redshifts.


2013 ◽  
Vol 9 (S304) ◽  
pp. 319-322
Author(s):  
Stéphanie Juneau

AbstractMultiwavelength identification of AGN is crucial not only to obtain a more complete census, but also to learn about the physical state of the nuclear activity (obscuration, efficiency, etc.). A panchromatic strategy plays an especially important role when the host galaxies are star-forming. Selecting far-Infrared galaxies at 0.3<z<1, and using AGN tracers in the X-ray, optical spectra, mid-infrared, and radio regimes, we found a twice higher AGN fraction than previous studies, thanks to the combined AGN identification methods and in particular the recent Mass-Excitation (MEx) diagnostic diagram. We furthermore find an intriguing relation between AGN X-ray absorption and the specific star formation rate (sSFR) of the host galaxies, indicating a physical link between X-ray absorption and either the gas fraction or the gas geometry in the hosts. These findings have implications for our current understanding of both the AGN unification model and the nature of the black hole-galaxy connection.


2013 ◽  
Vol 9 (S304) ◽  
pp. 302-306
Author(s):  
Chien-Ting J. Chen ◽  
Ryan C. Hickox

AbstractWe present the results of recent studies on the co-evolution of galaxies and the supermassive black holes (SMBHs) using Herschel far-infrared and Chandra X-ray observations in the Boötes survey region. For a sample of star-forming (SF) galaxies, we find a strong correlation between galactic star formation rate and the average SMBH accretion rate in SF galaxies. Recent studies have shown that star formation and AGN accretion are only weakly correlated for individual AGN, but this may be due to the short variability timescale of AGN relative to star formation. Averaging over the full AGN population yields a strong linear correlation between accretion and star formation, consistent with a simple picture in which the growth of SMBHs and their host galaxies are closely linked over galaxy evolution time scales.


1998 ◽  
Vol 506 (2) ◽  
pp. L81-L84 ◽  
Author(s):  
Mark Krumholz ◽  
S. E. Thorsett ◽  
Fiona A. Harrison

Sign in / Sign up

Export Citation Format

Share Document