scholarly journals On MHD rotational transport, instabilities and dynamo action in stellar radiation zones

2008 ◽  
Vol 4 (S259) ◽  
pp. 421-422
Author(s):  
Stéphane Mathis ◽  
A.-S. Brun ◽  
J.-P. Zahn

AbstractMagnetic field and their related dynamical effects are thought to be important in stellar radiation zones. For instance, it has been suggested that a dynamo, sustained by a m = 1 MHD instability of toroidal magnetic fields (discovered by Tayler in 1973), could lead to a strong transport of angular momentum and of chemicals in such stable regions. We wish here to recall the different magnetic transport processes present in radiative zone and show how the dynamo can operate by recalling the conditions required to close the dynamo loop (BPol → BTor → BPol). Helped by high-resolution 3D MHD simulations using the ASH code in the solar case, we confirm the existence of the m = 1 instability, study its non-linear saturation, but we do not detect, up to a magnetic Reylnods number of 105, any dynamo action.

2008 ◽  
Vol 4 (S252) ◽  
pp. 255-256
Author(s):  
S. Mathis ◽  
J.-P. Zahn ◽  
A.-S. Brun

AbstractMagnetic field is an essential dynamical process in stellar radiation zones. Moreover, it has been suggested that a dynamo action, sustained by a MHD instability which affects the toroidal axisymmetric magnetic field, could lead to a strong transport of angular momentum and of chemicals in such regions. Here, we recall the different magnetic transport and mixing processes in radiative regions. Next, we show that the dynamo cannot operate as described by Spruit (2002) and recall the condition required to close the dynamo loop. We perform high-resolution 3D simulations with the ASH code, where we observe indeed the MHD instability, but where we do not detect any dynamo action, contrary to J. Braithwaite (2006). We conclude on the picture we get for magnetic transport mechanisms in radiation zones and the associated consequences for stellar evolution.


Solar Physics ◽  
2021 ◽  
Vol 296 (8) ◽  
Author(s):  
J. Threlfall ◽  
J. Reid ◽  
A. W. Hood

AbstractMagnetohydrodynamic (MHD) instabilities allow energy to be released from stressed magnetic fields, commonly modelled in cylindrical flux tubes linking parallel planes, but, more recently, also in curved arcades containing flux tubes with both footpoints in the same photospheric plane. Uncurved cylindrical flux tubes containing multiple individual threads have been shown to be capable of sustaining an MHD avalanche, whereby a single unstable thread can destabilise many. We examine the properties of multi-threaded coronal loops, wherein each thread is created by photospheric driving in a realistic, curved coronal arcade structure (with both footpoints of each thread in the same plane). We use three-dimensional MHD simulations to study the evolution of single- and multi-threaded coronal loops, which become unstable and reconnect, while varying the driving velocity of individual threads. Experiments containing a single thread destabilise in a manner indicative of an ideal MHD instability and consistent with previous examples in the literature. The introduction of additional threads modifies this picture, with aspects of the model geometry and relative driving speeds of individual threads affecting the ability of any thread to destabilise others. In both single- and multi-threaded cases, continuous driving of the remnants of disrupted threads produces secondary, aperiodic bursts of energetic release.


1971 ◽  
Vol 43 ◽  
pp. 413-416 ◽  
Author(s):  
Shinzo Énomé ◽  
Haruo Tanaka

An expansion of the source of a great solar microwave burst was observed a little beyond the west limb on March 30, 1969. This expansion is interpreted in terms of diffusion of energetic electrons in a turbulent magnetic field in the flare region. The height of the source is estimated to have been 104 km.


1993 ◽  
Vol 139 ◽  
pp. 132-132
Author(s):  
G. Mathys

Magnetic field appears to play a major role in the pulsations of rapidly oscillating Ap (roAp) stars. Understanding of the behaviour of these objects thus requires knowledge of their magnetic field. Such knowledge is in particular essential to interpret the modulation of the amplitude of the photometric variations (with a frequency very close to the rotation frequency of the star) and to understand the driving mechanism of the pulsation. Therefore, a systematic programme of study of the magnetic field of roAp stars has been started, of which preliminary (and still very partial) results are presented here.Magnetic fields of Ap stars can be diagnosed from the Zeeman effect that they induced in spectral lines either from the observation of line-splitting in high-resolution unpolarized spectra (which only occurs in favourable circumstances) or from the observation of circular polarization of the lines in medium- to high-resolution spectra.


2000 ◽  
Vol 175 ◽  
pp. 617-620
Author(s):  
John M. Porter

AbstractIt is assumed that the dynamics of Be star discs is dominated by the effects of viscous stresses. By examining angular momentum transport in discs, we show that many, if not all observed Be star discs should be accretion discs unless (i) the disc is acted upon by another agent (e.g. magnetic fields or the stellar radiation field), or (ii) the disc cools significantly as it flows outwards.


2019 ◽  
Vol 488 (3) ◽  
pp. 3439-3445 ◽  
Author(s):  
Sharanya Sur

Abstract We explore the decay of turbulence and magnetic fields generated by fluctuation dynamo action in the context of galaxy clusters where such a decaying phase can occur in the aftermath of a major merger event. Using idealized numerical simulations that start from a kinetically dominated regime we focus on the decay of the steady state rms velocity and the magnetic field for a wide range of conditions that include varying the compressibility of the flow, the forcing wavenumber, and the magnetic Prandtl number. Irrespective of the compressibility of the flow, both the rms velocity and the rms magnetic field decay as a power law in time. In the subsonic case we find that the exponent of the power law is consistent with the −3/5 scaling reported in previous studies. However, in the transonic regime both the rms velocity and the magnetic field initially undergo rapid decay with an ≈t−1.1 scaling with time. This is followed by a phase of slow decay where the decay of the rms velocity exhibits an ≈−3/5 scaling in time, while the rms magnetic field scales as ≈−5/7. Furthermore, analysis of the Faraday rotation measure (RM) reveals that the Faraday RM also decays as a power law in time ≈t−5/7; steeper than the ∼t−2/5 scaling obtained in previous simulations of magnetic field decay in subsonic turbulence. Apart from galaxy clusters, our work can have potential implications in the study of magnetic fields in elliptical galaxies.


2019 ◽  
Vol 630 ◽  
pp. A99 ◽  
Author(s):  
A. Lavail ◽  
O. Kochukhov ◽  
G. A. J. Hussain

Aims. In this paper, we aim to characterise the surface magnetic fields of a sample of eight T Tauri stars from high-resolution near-infrared spectroscopy. Some stars in our sample are known to be magnetic from previous spectroscopic or spectropolarimetric studies. Our goals are firstly to apply Zeeman broadening modelling to T Tauri stars with high-resolution data, secondly to expand the sample of stars with measured surface magnetic field strengths, thirdly to investigate possible rotational or long-term magnetic variability by comparing spectral time series of given targets, and fourthly to compare the magnetic field modulus ⟨B⟩ tracing small-scale magnetic fields to those of large-scale magnetic fields derived by Stokes V Zeeman Doppler Imaging (ZDI) studies. Methods. We modelled the Zeeman broadening of magnetically sensitive spectral lines in the near-infrared K-band from high-resolution spectra by using magnetic spectrum synthesis based on realistic model atmospheres and by using different descriptions of the surface magnetic field. We developped a Bayesian framework that selects the complexity of the magnetic field prescription based on the information contained in the data. Results. We obtain individual magnetic field measurements for each star in our sample using four different models. We find that the Bayesian Model 4 performs best in the range of magnetic fields measured on the sample (from 1.5 kG to 4.4 kG). We do not detect a strong rotational variation of ⟨B⟩ with a mean peak-to-peak variation of 0.3 kG. Our confidence intervals are of the same order of magnitude, which suggests that the Zeeman broadening is produced by a small-scale magnetic field homogeneously distributed over stellar surfaces. A comparison of our results with mean large-scale magnetic field measurements from Stokes V ZDI show different fractions of mean field strength being recovered, from 25–42% for relatively simple poloidal axisymmetric field topologies to 2–11% for more complex fields.


2010 ◽  
Vol 6 (S273) ◽  
pp. 333-337 ◽  
Author(s):  
Sanjiv Kumar Tiwari

AbstractIn a force-free magnetic field, there is no interaction of field and the plasma in the surrounding atmosphere i.e., electric currents are aligned with the magnetic field, giving rise to zero Lorentz force. The computation of many magnetic parameters like magnetic energy, gradient of twist of sunspot magnetic fields (computed from the force-free parameter α), including any kind of extrapolations heavily hinge on the force-free approximation of the photospheric magnetic fields. The force-free magnetic behaviour of the photospheric sunspot fields has been examined by Metcalf et al. (1995) and Moon et al. (2002) ending with inconsistent results. Metcalf et al. (1995) concluded that the photospheric magnetic fields are far from the force-free nature whereas Moon et al. (2002) found the that the photospheric magnetic fields are not so far from the force-free nature as conventionally regarded. The accurate photospheric vector field measurements with high resolution are needed to examine the force-free nature of sunspots. We use high resolution vector magnetograms obtained from the Solar Optical Telescope/Spectro-Polarimeter (SOT/SP) aboard Hinode to inspect the force-free behaviour of the photospheric sunspot magnetic fields. Both the necessary and sufficient conditions for force-freeness are examined by checking global as well as as local nature of sunspot magnetic fields. We find that the sunspot magnetic fields are very close to the force-free approximation, although they are not completely force-free on the photosphere.


1974 ◽  
Vol 60 ◽  
pp. 275-292 ◽  
Author(s):  
R. D. Davies

Observations of Class I OH maser sources show a range of features which are predicted on the basis of Zeeman splitting in a source magnetic field. Magnetic field strengths of 2 to 7 mG are derived for eight OH maser sources. The fields in all the clouds are directed in the sense of galactic rotation. A model of W3 OH is proposed which incorporates the magnetic field data. It is shown that no large amount of magnetic flux or angular momentum has been lost since the condensation from the interstellar medium began.


1993 ◽  
Vol 157 ◽  
pp. 395-401 ◽  
Author(s):  
Harald Lesch

Stimulated by recent high frequency radio polarization measurements of M83 and M51, we consider the influence of non-axisymmetric features (bars, spiral arms, etc…) on galactic magnetic fields. The time scale for the field amplification due to the non-axisymmetric velocity field is related to the time scale of angular momentum transport in the disk by the non-axisymmetric features. Due to its dissipational character (cooling and angular momentum transport) the gas plays a major role for the excitation of non-axisymmetric instabilities. Since it is the gaseous component of the interstellar gas in which magnetic field amplification takes place we consider the interplay of gasdynamical processes triggered by gravitational instabilities and magnetic fields. A comparison with the time scale for dynamo action in a disk from numerical models for disk dynamos gives the result that field amplification by non-axisymmetric features is faster in galaxies like M83 (strong bar) and M51 (compagnion and very distinct spiral structure), than amplification by an axisymmetric dynamo. Furthermore, we propose that axisymmetric gravitational instabilities may provide the turbulent magnetic diffusivity ηT. Based on standard galaxy models we obtain a radially dependent diffusivity whose numerical value rises from 1025cm2s−1 to 1027cm2s−1, declining for large radii.


Sign in / Sign up

Export Citation Format

Share Document