scholarly journals Superdense massive galaxies in the nearby universe

2009 ◽  
Vol 5 (S262) ◽  
pp. 331-332
Author(s):  
Anna Ferré-Mateu ◽  
Ignacio Trujillo

AbstractAt high-z the most superdense massive galaxies are supposed to be the result of gas-rich mergers resulting in compact remnant (Khochfar & Silk (2006); Naab et al. (2007)). After this, dry mergers are expected to be the mechanism that moves these very massive galaxies towards the current stellar mass size relation. Whitin these merging scenarios, a non-negligible fraction (1-10%) of these galaxies is expected to survive since that epoch retaining their compactness and presenting old stellar populations in the past universe.Using the NYU Value-Added Galaxy Catalog (DR6), we find only a tiny fraction of galaxies (~0.03%) with re ≤ 1.5 kpc and M* ≥ 8x1010M⊙ in the local Universe (z~0.2). Surprisingly, they are relatively young (~2Gyr) and metal rich ([Z/H]~0.2) These results have been published in Trujillo et al. (2009)

2013 ◽  
Vol 434 (1) ◽  
pp. 325-335 ◽  
Author(s):  
M. Fernández Lorenzo ◽  
J. Sulentic ◽  
L. Verdes-Montenegro ◽  
M. Argudo-Fernández

2013 ◽  
Vol 779 (1) ◽  
pp. 29 ◽  
Author(s):  
M. Huertas-Company ◽  
F. Shankar ◽  
S. Mei ◽  
M. Bernardi ◽  
J. A. L. Aguerri ◽  
...  

2019 ◽  
Vol 631 ◽  
pp. A158 ◽  
Author(s):  
L. A. Díaz-García ◽  
A. J. Cenarro ◽  
C. López-Sanjuan ◽  
L. Peralta de Arriba ◽  
I. Ferreras ◽  
...  

Aims. We perform a comprehensive study of the stellar population properties (formation epoch, age, metallicity, and extinction) of quiescent galaxies as a function of size and stellar mass to constrain the physical mechanism governing the stellar mass assembly and the likely evolutive scenarios that explain their growth in size. Methods. After selecting all the quiescent galaxies from the ALHAMBRA survey by the dust-corrected stellar mass–colour diagram, we built a shared sample of ∼850 quiescent galaxies with reliable measurements of sizes from the HST. This sample is complete in stellar mass and luminosity, I ≤ 23. The stellar population properties were retrieved using the fitting code for spectral energy distributions called MUlti-Filter FITting for stellar population diagnostics (MUFFIT) with various sets of composite stellar population models. Age, formation epoch, metallicity, and extinction were studied on the stellar mass–size plane as function of size through a Monte Carlo approach. This accounted for uncertainties and degeneracy effects amongst stellar population properties. Results. The stellar population properties of quiescent galaxies and their stellar mass and size since z ∼ 1 are correlated. At fixed stellar mass, the more compact the quiescent galaxy, the older and richer in metals it is (1 Gyr and 0.1 dex, respectively). In addition, more compact galaxies may present slight lower extinctions than their more extended counterparts at the same stellar mass (< 0.1 mag). By means of studying constant regions of stellar population properties across the stellar mass–size plane, we obtained empirical relations to constrain the physical mechanism that governs the stellar mass assembly of the form M⋆ ∝ rcα, where α amounts to 0.50–0.55 ± 0.09. There are indications that support the idea that the velocity dispersion is tightly correlated with the stellar content of galaxies. The mechanisms driving the evolution of stellar populations can therefore be partly linked to the dynamical properties of galaxies, along with their gravitational potential.


Author(s):  
Peter Lustig ◽  
Veronica Strazzullo ◽  
Chiara D’Eugenio ◽  
Emanuele Daddi ◽  
Maurilio Pannella ◽  
...  

Abstract We study structural properties of spectroscopically confirmed massive quiescent galaxies at z ≈ 3 with one of the first sizeable samples of such sources, made of ten 10.8 &lt; log (M⋆/M⊙) &lt; 11.3 galaxies at 2.4 &lt; z &lt; 3.2 in the COSMOS field whose redshifts and quiescence are confirmed by HST grism spectroscopy. Although affected by a weak bias toward younger stellar populations, this sample is deemed to be largely representative of the majority of the most massive and thus intrinsically rarest quiescent sources at this cosmic time. We rely on targeted HST/WFC3 observations and fit Sérsic profiles to the galaxy surface brightness distributions at ≈4000Årestframe. We find typically high Sérsic indices and axis ratios (medians ≈4.5 and 0.73, respectively) suggesting that, at odds with some previous results, the first massive quiescent galaxies may largely be already bulge-dominated systems. We measure compact galaxy sizes with an average of ≈1.4kpc at log (M⋆/M⊙) ≈ 11.2, in good agreement with the extrapolation at the highest masses of previous determinations of the stellar mass - size relation of quiescent galaxies, and of its redshift evolution, from photometrically selected samples at lower and similar redshifts. This work confirms the existence of a population of compact, bulge dominated, massive, quiescent sources at z ≈ 3, providing one of the first statistical estimates of their structural properties, and further constraining the early formation and evolution of the first quiescent galaxies.


2020 ◽  
Vol 634 ◽  
pp. A11
Author(s):  
Sandra N. dos Reis ◽  
Fernando Buitrago ◽  
Polychronis Papaderos ◽  
Israel Matute ◽  
José Afonso ◽  
...  

Context. The most massive galaxies (Mstellar ≥ 1011 M⊙) in the local Universe are characterized by a bulge-dominated morphology and old stellar populations, in addition to being confined to a tight mass-size relation. Identifying their main components can provide insights into their formation mechanisms and subsequent mass assembly. Aims. Taking advantage of Hubble Space Telescope (HST) CANDELS data, we analyze the lowest redshift (z <  0.5) massive galaxies in the H and I band in order to disentangle their structural constituents and study possible faint non-axisymmetric features. Methods. Our final sample consists of 17 massive galaxies. Due to the excellent HST spatial resolution for intermediate redshift objects, they are hard to model by purely automatic parametric fitting algorithms. We performed careful single and double (bulge-disk decompositions) Sérsic fits to their galaxy surface brightness profiles. We compare the model color profiles with the observed ones and also derive multi-component global effective radii attempting to obtain a better interpretation of the mass-size relation. Additionally, we test the robustness of our measured structural parameters via simulations. Results. We find that the Sérsic index does not offer a good proxy for the visual morphological type for our sample of massive galaxies. Our derived multi-component effective radii give a better description of the size of our sample galaxies than those inferred from single Sérsic models with GALFIT. Our galaxy population lies on the scatter of the local mass-size relation, indicating that these massive galaxies have not experienced a significant growth in size since z ∼ 0.5. Interestingly, the few outliers are late-type galaxies, indicating that spheroids must reach the local mass-size relation earlier. For most of our sample galaxies, both single- and multi-component Sérsic models with GALFIT show substantial systematic deviations from the observed surface brightness profiles in the outskirts. These residuals may be partly due to several factors, namely a nonoptimal data reduction for low surface brightness features or the existence of prominent stellar haloes for massive galaxies, or they could also arise from conceptual shortcomings of parametric 2D image decomposition tools. They consequently propagate into galaxy color profiles. This is a significant obstacle to the exploration of the structural evolution of galaxies, which calls for a critical assessment and refinement of existing surface photometry techniques.


2010 ◽  
Vol 6 (S277) ◽  
pp. 138-141 ◽  
Author(s):  
M. Puech ◽  
F. Hammer ◽  
H. Flores ◽  
R. Delgado-Serrano ◽  
M. Rodrigues ◽  
...  

AbstractScaling relations are salient ingredients of galaxy evolution and formation models. I summarize results from the IMAGES survey, which combines spatially-resolved kinematics from FLAMES/GIRAFFE with imaging from HST/ACS and other facilities. Specifically, I will focus on the evolution of the stellar mass and baryonic Tully-Fisher Relations (TFR) from z = 0.6 down to z = 0. We found a significant evolution in zero point and scatter of the stellar mass TFR compared to the local Universe. Combined with gas fractions derived by inverting the Schmidt-Kennicutt relation, we derived for the first time a baryonic TFR at high redshift. Conversely to the stellar mass TFR, the baryonic relation does not appear to evolve in zero point, which suggests that most of the reservoir of gas converted into stars over the past 6 Gyr was already gravitationally bound to galaxies at z = 0.6.


2019 ◽  
Vol 489 (3) ◽  
pp. 4135-4154 ◽  
Author(s):  
Paola Dimauro ◽  
Marc Huertas-Company ◽  
Emanuele Daddi ◽  
Pablo G Pérez-González ◽  
Mariangela Bernardi ◽  
...  

ABSTRACT We study the rest-frame optical mass–size relation of bulges and discs from z ∼ 2 to z ∼ 0 for a complete sample of massive galaxies in the CANDELS fields using two-component Sérsic models. Discs and star-forming galaxies follow similar mass–size relations. The mass–size relation of bulges is less steep than the one of quiescent galaxies (best-fitting slope of 0.7 for quiescent galaxies against 0.4 for bulges). We find little dependence of the structural properties of massive bulges and discs with the global morphology of galaxies (disc versus bulge dominated) and the star formation activity (star-forming versus quiescent). This result suggests similar bulge formation mechanisms for most massive galaxies and also that the formation of the bulge component does not significantly affect the disc structure. Our results pose a challenge to current cosmological models that predict distinct structural properties for stellar bulges arising from mergers and disc instabilities.


Sign in / Sign up

Export Citation Format

Share Document