scholarly journals Modeling circumstellar envelope with advanced numerical codes

2010 ◽  
Vol 6 (S274) ◽  
pp. 175-177
Author(s):  
P. Procopio ◽  
A. De Rosa ◽  
C. Burigana ◽  
G. Umana ◽  
C. Trigilio

AbstractWe propose a modeling study on the formation and evolution of the Circumstellar Envelopes (CSEs) of a sample of selected radio-loud objects, based on an innovative interaction between two codes widely used by the scientific community, but in different fields. CLOUDY (Ferland et al. 1998) is a widely used code to model the spectral energy distribution (SED) of the several objects characterized by clouds of gas heated and ionized by a central object. CosmoMC (Lewis & Bridle 2002) instead is usually used for exploring cosmological parameter space. We investigate here on the exploitation of the sampling performance of the Markov-Chain Monte-Carlo (MCMC) engine of CosmoMC to search for a best fit model of the considered objects through the spectral synthesis capacity of CLOUDY.

2016 ◽  
Vol 12 (S329) ◽  
pp. 414-414
Author(s):  
Robert Klement ◽  
Alex C. Carciofi ◽  
Thomas Rivinius ◽  
Lynn D. Matthews ◽  
Richard Ignace ◽  
...  

AbstractTo this date ψ Per is the only classical Be star that was angularly resolved in radio (by the VLA at λ = 2 cm). Gaussian fit to the azimuthally averaged visibility data indicates a disk size (FWHM) of ~500 stellar radii (Dougherty & Taylor 1992). Recently, we obtained new multi-band cm flux density measurements of ψ Per from the enhanced VLA. We modeled the observed spectral energy distribution (SED) covering the interval from ultraviolet to radio using the Monte Carlo radiative transfer code HDUST (Carciofi & Bjorkman 2006). An SED turndown, that occurs between far-IR and radio wavelengths, is explained by a truncated viscous decretion disk (VDD), although the shallow slope of the radio SED suggests that the disk is not simply cut off, as is assumed in our model. The best-fit size of a truncated disk derived from the modeling of the radio SED is 100+5−15 stellar radii, which is in striking contrast with the result of Dougherty & Taylor (1992). The reasons for this discrepancy are under investigation.


2008 ◽  
Vol 10 (2) ◽  
pp. 153-162 ◽  
Author(s):  
B. G. Ruessink

When a numerical model is to be used as a practical tool, its parameters should preferably be stable and consistent, that is, possess a small uncertainty and be time-invariant. Using data and predictions of alongshore mean currents flowing on a beach as a case study, this paper illustrates how parameter stability and consistency can be assessed using Markov chain Monte Carlo. Within a single calibration run, Markov chain Monte Carlo estimates the parameter posterior probability density function, its mode being the best-fit parameter set. Parameter stability is investigated by stepwise adding new data to a calibration run, while consistency is examined by calibrating the model on different datasets of equal length. The results for the present case study indicate that various tidal cycles with strong (say, >0.5 m/s) currents are required to obtain stable parameter estimates, and that the best-fit model parameters and the underlying posterior distribution are strongly time-varying. This inconsistent parameter behavior may reflect unresolved variability of the processes represented by the parameters, or may represent compensational behavior for temporal violations in specific model assumptions.


2021 ◽  
Vol 923 (1) ◽  
pp. 5
Author(s):  
Yuma Sugahara ◽  
Akio K. Inoue ◽  
Takuya Hashimoto ◽  
Satoshi Yamanaka ◽  
Seiji Fujimoto ◽  
...  

Abstract We present new Atacama Large Millimeter/submillimeter Array Band 7 observational results of a Lyman-break galaxy at z = 7.15, B14-65666 (“Big Three Dragons”), which is an object detected in [O iii] 88 μm, [C ii] 158 μm, and dust continuum emission during the epoch of reionization. Our targets are the [N ii] 122 μm fine-structure emission line and the underlying 120 μm dust continuum. The dust continuum is detected with a ∼19σ significance. From far-infrared spectral energy distribution sampled at 90, 120, and 160 μm, we obtain a best-fit dust temperature of 40 K (79 K) and an infrared luminosity of log 10 ( L IR / L ⊙ ) = 11.6 (12.1) at the emissivity index β = 2.0 (1.0). The [N ii] 122 μm line is not detected. The 3σ upper limit of the [N ii] luminosity is 8.1 × 107 L ⊙. From the [N ii], [O iii], and [C ii] line luminosities, we use the Cloudy photoionization code to estimate nebular parameters as functions of metallicity. If the metallicity of the galaxy is high (Z > 0.4 Z ⊙), the ionization parameter and hydrogen density are log 10 U ≃ − 2.7 ± 0.1 and n H ≃ 50–250 cm−3, respectively, which are comparable to those measured in low-redshift galaxies. The nitrogen-to-oxygen abundance ratio, N/O, is constrained to be subsolar. At Z < 0.4 Z ⊙, the allowed U drastically increases as the assumed metallicity decreases. For high ionization parameters, the N/O constraint becomes weak. Finally, our Cloudy models predict the location of B14-65666 on the BPT diagram, thereby allowing a comparison with low-redshift galaxies.


2013 ◽  
Vol 9 (S304) ◽  
pp. 228-229
Author(s):  
Gabriela Calistro Rivera ◽  
Elisabeta Lusso ◽  
Joseph F. Hennawi ◽  
David W. Hogg

AbstractWe present AGNfitter: a Markov Chain Monte Carlo algorithm developed to fit the spectral energy distributions (SEDs) of active galactic nuclei (AGN) with different physical models of AGN components. This code is well suited to determine in a robust way multiple parameters and their uncertainties, which quantify the physical processes responsible for the panchromatic nature of active galaxies and quasars. We describe the technicalities of the code and test its capabilities in the context of X-ray selected obscured AGN using multiwavelength data from the XMM-COSMOS survey.


2019 ◽  
Vol 489 (3) ◽  
pp. 3218-3231 ◽  
Author(s):  
Thavisha E Dharmawardena ◽  
Francisca Kemper ◽  
Sundar Srinivasan ◽  
Peter Scicluna ◽  
Jonathan P Marshall ◽  
...  

ABSTRACT We present the highest resolution single-dish submillimetre observations of the detached shell source U Antliae to date. The observations were obtained at $450$ and $850\,{\mu}{\rm m}$ with SCUBA-2 instrument on the James Clerk Maxwell Telescope as part of the Nearby Evolved Stars Survey. The emission at $850\,{\mu}{\rm m}$ peaks at 40 arcsec with hints of a second peak seen at ∼20 arcsec. The emission can be traced out to a radius of 56 arcsec at a 3σ level. The outer peak observed at $850\,{\mu}{\rm m}$ aligns well with the peak observed at Herschel/PACS wavelengths. With the help of spectral energy distribution fitting and radiative transfer calculations of multiple-shell models for the circumstellar envelope, we explore the various shell structures and the variation of grain sizes along the in the circumstellar envelope. We determine a total shell dust mass of (2.0 ± 0.3) × 10−5 M⊙ and established that the thermal pulse that gave rise to the detached shell occurred 3500 ± 500 yr ago.


2019 ◽  
Vol 626 ◽  
pp. A130
Author(s):  
T. Tsuchikawa ◽  
H. Kaneda ◽  
S. Oyabu ◽  
T. Kokusho ◽  
K. Morihana ◽  
...  

Context. Although heavily obscured active galactic nuclei (AGNs) have been found by many observational studies, the properties of the surrounding dust are poorly understood. Using AKARI/IRC spectroscopy, we discovered a new heavily obscured AGN in LEDA 1712304 which shows a deep spectral absorption feature due to silicate dust. Aims. We study the infrared (IR) spectral properties of circumnuclear silicate dust in LEDA 1712304. Methods. We performed IR spectral fitting, considering silicate dust properties such as composition, porosity, size, and crystallinity. Spectral energy distribution fitting was also performed on the flux densities in the UV to submillimeter range to investigate the global spectral properties. Results. The best-fit model indicates 0.1 μm-sized porous amorphous olivine (Mg2xFe2−2xSiO4; x = 0.4) with 4% crystalline pyroxene. The optical depth is τsil ∼ 2.3, while the total IR luminosity and stellar mass are estimated to be LIR = (5 ± 1)×1010 L⊙ and Mstar = (2.7 ± 0.8)×109 M⊙, respectively. In such low LIR and Mstar ranges, there are few galaxies that show such a large τsil. Conclusion. The silicate dust in the AGN torus of LEDA 1712304 has properties that are notably similar to those in other AGNs overall, but slightly different in the wing shape of the absorption profile. The porosity of the silicate dust suggests dust coagulation or processing in the circumnuclear environments, while the crystallinity suggests that the silicate dust is relatively fresh.


2018 ◽  
Vol 614 ◽  
pp. A106 ◽  
Author(s):  
M. T. Carney ◽  
D. Fedele ◽  
M. R. Hogerheijde ◽  
C. Favre ◽  
C. Walsh ◽  
...  

Context. Physical and chemical processes in protoplanetary disks affect the disk structure and the midplane environment within which planets form. The simple deuterated molecular cation DCO+ has been proposed to act as a tracer of the disk midplane conditions. Aims. This work aims to understand which midplane conditions are probed by the DCO+ emission in the disk around the Herbig Ae star HD 169142. We explore the sensitivity of the DCO+ formation pathways to gas temperature and CO abundance. Methods. The DCO+ J = 3−2 transition was observed with Atacama Large Millimeter/submillimeter Array at a spatial resolution of ~0.3′′ (35 AU at 117 pc). We modeled the DCO+ emission in HD 169142 with a physical disk structure adapted from the literature, and employed a simple deuterium chemical network to investigate the formation of DCO+ through the cold deuterium fractionation pathway via H2D+. Parameterized models are used to modify the gas temperature and CO abundance structure of the disk midplane to test their effect on DCO+ production. Contributions from the warm deuterium fractionation pathway via CH2D+ are approximated using a constant abundance in the intermediate disk layers. Results. The DCO+ line is detected in the HD 169142 disk with a total integrated line flux of 730 ± 73 mJy km s−1. The radial intensity profile reveals a warm, inner component of the DCO+ emission at radii ≲30 AU and a broad, ring-like structure from ~50–230 AU with a peak at 100 AU just beyond the edge of the millimeter grain distribution. Parameterized models show that alterations to the midplane gas temperature and CO abundance are both needed to recover the observed DCO+ radial intensity profile. The alterations are relative to the fiducial physical structure of the literature model constrained by dust and CO observations. The best-fit model contains a shadowed, cold midplane in the region z∕r < 0.1 with an 8 K decrease in Tgas and a factor of five CO depletion just beyond the millimeter grains (r = 83 AU), and a 2 K decrease in Tgas for r > 120 AU. The warm deuterium fractionation pathway is implemented as a constant DCO+ abundance of 2.0 × 10−12 between 30–70 K and contributes >85% to the DCO+ emission at r < 83 AU in the best-fit model. Conclusions. The DCO+ emission probes a reservoir of cold material in the HD 169142 outer disk that is not probed by the millimeter continuum, the spectral energy distribution, nor the emission from the 12 CO, 13 CO, or C18O J = 2−1 lines. The DCO+ emission is a sensitive probe of gas temperature and CO abundance near the disk midplane and provides information about the outer disk beyond the millimeter continuum distribution that is largely absent in abundant gaseous tracers such as CO isotopologues.


2020 ◽  
Vol 10 (1) ◽  
pp. 7-11
Author(s):  
B. Etmański ◽  
M. Schmidt ◽  
R. Szczerba

The HIFI instrument on board of the Herschel Space Observatory (HSO) has been very successful in detecting molecular lines from the circumstellar envelopes around evolved stars, like massive red supergiants, Asymptotic Giant Branch (AGB) and post-AGB stars, as well as the planetary nebulae. Among others, ammonia have been found in the circumstellar envelopes of C-rich AGB stars in amounts that significantly exceeded the theoretical predictions for C-rich stars. Few scenarios have been proposed to resolve this problem: formation of ammonia behind the shock front and photochemical processes in the inner part of the envelope partly transparent to UV background radiation due to the clumpy structure of the gas and formation of ammonia on dust grains. Careful analysis of observations may help to put the constraints on one or another mechanism of ammonia formation. Here, we present results of the non-LTE radiative transfer modeling of ammonia transitions including the crucial process of radiative pumping via the v2=1 vibrational band (at ∼10 μm) for V Cyg. Only the ground-based ammonia transition NH3 J = 10-00 at 572.5 GHz has been observed by HIFI. Therefore, to determine the abundance of ammonia we estimate the photodissociation radius of NH3 using chemical model of the envelope consistent with the dust grain properties concluded from the spectral energy distribution.


2018 ◽  
Vol 615 ◽  
pp. A160 ◽  
Author(s):  
A. Cheetham ◽  
M. Bonnefoy ◽  
S. Desidera ◽  
M. Langlois ◽  
A. Vigan ◽  
...  

We report the discovery of a bright, brown dwarf companion to the star HIP 64892, imaged with VLT/SPHERE during the SHINE exoplanet survey. The host is a B9.5V member of the Lower-Centaurus-Crux subgroup of the Scorpius Centaurus OB association. The measured angular separation of the companion (1.2705 ± 0.0023”) corresponds to a projected distance of 159 ± 12 AU. We observed the target with the dual-band imaging and long-slit spectroscopy modes of the IRDIS imager to obtain its spectral energy distribution (SED) and astrometry. In addition, we reprocessed archival NACO L-band data, from which we also recover the companion. Its SED is consistent with a young (<30 Myr), low surface gravity object with a spectral type of M9γ ± 1. From comparison with the BT-Settl atmospheric models we estimate an effective temperature of Teff = 2600 ± 100 K, and comparison of the companion photometry to the COND evolutionary models yields a mass of ~29−37 MJ at the estimated age of 16−7+15 Myr for the system. The star HIP 64892 is a rare example of an extreme-mass ratio system (q ~ 0.01) and will be useful for testing models relating to the formation and evolution of such low-mass objects.


Sign in / Sign up

Export Citation Format

Share Document