scholarly journals Planetesimal and protoplanet dynamics in a turbulent protoplanetary disk

2010 ◽  
Vol 6 (S276) ◽  
pp. 517-518
Author(s):  
Chao-Chin Yang ◽  
Mordecai-Mark Mac Low ◽  
Kristen Menou

AbstractDue to the gravitational influence of density fluctuations driven by magneto-rotational instability in the gas disk, planetesimals and protoplanets undergo diffusive radial migration as well as changes of other orbital properties. The magnitude of the effect on particle orbits has important consequences for planet formation scenarios. We use the local-shearing-box approximation to simulate an ideal, isothermal, magnetized gas disk with vertical density stratification and simultaneously evolve numerous massless particles moving under the gravity of the gas and the host star. Although the results converge with resolution for fixed box dimensions, we find there exists no convergence of the response of the particles to the gravity of the gas against the horizontal box size, up to 16 disk scale heights. This lack of convergence indicate that caution should be exercised when interpreting local-shearing-box models involving gravitational physics of magneto-rotational turbulence.

2022 ◽  
Vol 924 (1) ◽  
pp. 3
Author(s):  
Ziyan Xu ◽  
Xue-Ning Bai

Abstract Planetesimal formation is a crucial yet poorly understood process in planet formation. It is widely believed that planetesimal formation is the outcome of dust clumping by the streaming instability (SI). However, recent analytical and numerical studies have shown that the SI can be damped or suppressed by external turbulence, and at least the outer regions of protoplanetary disks are likely weakly turbulent due to magneto-rotational instability (MRI). We conduct high-resolution local shearing-box simulations of hybrid particle-gas magnetohydrodynamics (MHD), incorporating ambipolar diffusion as the dominant nonideal MHD effect, applicable to outer disk regions. We first show that dust backreaction enhances dust settling toward the midplane by reducing turbulence correlation time. Under modest level of MRI turbulence, we find that dust clumping is in fact easier than the conventional SI case, in the sense that the threshold of solid abundance for clumping is lower. The key to dust clumping includes dust backreaction and the presence of local pressure maxima, which in our work is formed by the MRI zonal flows overcoming background pressure gradient. Overall, our results support planetesimal formation in the MRI-turbulent outer protoplanetary disks, especially in ring-like substructures.


1995 ◽  
Author(s):  
A. Fujisawa ◽  
A. Ouroua ◽  
J.W. Heard ◽  
T.P. Crowley ◽  
P.M. Schoch ◽  
...  

Author(s):  
David M. Wittman

Tis chapter explains the famous equation E = mc2 as part of a wider relationship between energy, mass, and momentum. We start by defning energy and momentum in the everyday sense. We then build on the stretching‐triangle picture of spacetime vectors developed in Chapter 11 to see how energy, mass, and momentum have a deep relationship that is not obvious at everyday low speeds. When momentum is zero (a mass is at rest) this energy‐momentum relation simplifes to E = mc2, which implies that mass at rest quietly stores tremendous amounts of energy. Te energymomentum relation also implies that traveling near the speed of light (e.g., to take advantage of time dilation for interstellar journeys) will require tremendous amounts of energy. Finally, we look at the simplifed form of the energy‐momentum relation when the mass is zero. Tis gives us insight into the behavior of massless particles such as the photon.


Sign in / Sign up

Export Citation Format

Share Document