scholarly journals Modeling the solar cycle: what the future holds

2011 ◽  
Vol 7 (S286) ◽  
pp. 54-64
Author(s):  
Dibyendu Nandy

AbstractStellar magnetic fields are produced by a magnetohydrodynamic dynamo mechanism working in their interior – which relies on the interaction between plasma flows and magnetic fields. The Sun, being a well-observed star, offers an unique opportunity to test theoretical ideas and models of stellar magnetic field generation. Solar magnetic fields produce sunspots, whose number increases and decreases with a 11 year periodicity – giving rise to what is known as the solar cycle. Dynamo models of the solar cycle seek to understand its origin, variation and evolution with time. In this review, I summarize observations of the solar cycle and describe theoretical ideas and kinematic dynamo modeling efforts to address its origin. I end with a discussion on the future of solar cycle modeling – emphasizing the importance of a close synergy between observational data assimilation, kinematic dynamo models and full magnetohydrodynamic models of the solar interior.

2018 ◽  
Vol 619 ◽  
pp. L9 ◽  
Author(s):  
M. Bazot ◽  
M. B. Nielsen ◽  
D. Mary ◽  
J. Christensen-Dalsgaard ◽  
O. Benomar ◽  
...  

Stellar magnetic fields are poorly understood, but are known to be important for stellar evolution and exoplanet habitability. They drive stellar activity, which is the main observational constraint on theoretical models for magnetic field generation and evolution. Starspots are the main manifestation of the magnetic fields at the stellar surface. In this study we measured the variation in their latitude with time, called a butterfly diagram in the solar case, for the solar analogue HD 173701 (KIC 8006161). To this end, we used Kepler data to combine starspot rotation rates at different epochs and the asteroseismically determined latitudinal variation in the stellar rotation rates. We observe a clear variation in the latitude of the starspots. It is the first time such a diagram has been constructed using asteroseismic data.


2014 ◽  
Vol 10 (S305) ◽  
pp. 22-27
Author(s):  
Marianne Faurobert ◽  
Gilbert Ricort ◽  
Bruce Lites

AbstractThe quiet Sun observed in polarized light exhibits a rich and complex magnetic structuring which is still not fully resolved nor understood. The present work is intended to contribute to the debate about the origin of the quiet sun magnetic fields, in relation or not to the global solar dynamo. We present analysis of center-to-limb polarization measurements obtained with the SOT/SP spectropolarimeter onboard the Hinode satellite outside active regions, in 2007 and 2013, i.e. at a minimum and a maximum of the solar cycle, respectively. We compare the spatial fluctuation Fourier spectra of unsigned circular and linear polarization images after corrections for polarization bias and focus variations between the two data sets. The decay of active regions is clearly a source of magnetic fields in the quiet Sun. It leads to a global increase of the polarization fluctuation power spectrum in 2013 in the network. In the internetwork, we observe no variation of the polarization fluctuation power at mesogranular and granular scales, whereas it increases at sub-granular scales. We interpret these results in the following way. At the mesogranular and granular scales very efficient mechanisms of magnetic field removal are operating in the internetwork, that leads to a dissipation or a concentration of magnetic fields on smaller scales. So the cycle-invariant magnetic signal that we detect at mesogranular and granular scales must be continuously created by a dynamo mechanism which is independent of the solar cycle.


2012 ◽  
Vol 8 (S294) ◽  
pp. 439-444 ◽  
Author(s):  
Dibyendu Nandy ◽  
Bidya Binay Karak

AbstractHaving advance knowledge of solar activity is important because the Sun's magnetic output governs space weather and impacts technologies reliant on space. However, the irregular nature of the solar cycle makes solar activity predictions a challenging task. This is best achieved through appropriately constrained solar dynamo simulations and as such the first step towards predictions is to understand the underlying physics of the solar dynamo mechanism. In Babcock-Leighton type dynamo models, the poloidal field is generated near the solar surface whereas the toroidal field is generated in the solar interior. Therefore a finite time is necessary for the coupling of the spatially segregated source layers of the dynamo. This time delay introduces a memory in the dynamo mechanism which allows forecasting of future solar activity. Here we discuss how this forecasting ability of the solar cycle is affected by downward turbulent pumping of magnetic flux. With significant turbulent pumping the memory of the dynamo is severely degraded and thus long term prediction of the solar cycle is not possible; only a short term prediction of the next cycle peak may be possible based on observational data assimilation at the previous cycle minimum.


1994 ◽  
Vol 144 ◽  
pp. 559-564
Author(s):  
P. Ambrož ◽  
J. Sýkora

AbstractWe were successful in observing the solar corona during five solar eclipses (1973-1991). For the eclipse days the coronal magnetic field was calculated by extrapolation from the photosphere. Comparison of the observed and calculated coronal structures is carried out and some peculiarities of this comparison, related to the different phases of the solar cycle, are presented.


2008 ◽  
Vol 4 (S254) ◽  
pp. 95-96
Author(s):  
Arthur M. Wolfe ◽  
Regina A. Jorgenson ◽  
Timothy Robishaw ◽  
Carl Heiles ◽  
Jason X. Prochaska

AbstractThe magnetic field pervading our Galaxy is a crucial constituent of the interstellar medium: it mediates the dynamics of interstellar clouds, the energy density of cosmic rays, and the formation of stars (Beck 2005). The field associated with ionized interstellar gas has been determined through observations of pulsars in our Galaxy. Radio-frequency measurements of pulse dispersion and the rotation of the plane of linear polarization, i.e., Faraday rotation, yield an average value B ≈ 3 μG (Han et al. 2006). The possible detection of Faraday rotation of linearly polarized photons emitted by high-redshift quasars (Kronberg et al. 2008) suggests similar magnetic fields are present in foreground galaxies with redshifts z > 1. As Faraday rotation alone, however, determines neither the magnitude nor the redshift of the magnetic field, the strength of galactic magnetic fields at redshifts z > 0 remains uncertain.Here we report a measurement of a magnetic field of B ≈ 84 μG in a galaxy at z =0.692, using the same Zeeman-splitting technique that revealed an average value of B = 6 μG in the neutral interstellar gas of our Galaxy (Heiles et al. 2004). This is unexpected, as the leading theory of magnetic field generation, the mean-field dynamo model, predicts large-scale magnetic fields to be weaker in the past, rather than stronger (Parker 1970).The full text of this paper was published in Nature (Wolfe et al. 2008).


1994 ◽  
Vol 154 ◽  
pp. 437-447 ◽  
Author(s):  
Steven H. Saar

I review the advantages, techniques, and results of measurement of magnetic fields on cool stars in the infrared (IR). These measurements have generated several important results, including the following: the first data on the magnetic parameters of dMe and RS CVn variables; evidence for field strength confinement by photospheric gas pressure; support for the correlation between magnetic flux and rotation, with possible saturation at high rotation rates; indications of horizontal and/or vertical magnetic field structure; and evidence of spatial variations in B over a stellar surface. I discuss these results in detail, and suggest future directions for IR magnetic field research.


2010 ◽  
Vol 6 (S273) ◽  
pp. 141-147
Author(s):  
Rainer Arlt

AbstractThis review is an attempt to elucidate MHD phenomena relevant for stellar magnetic fields. The full MHD treatment of a star is a problem which is numerically too demanding. Mean-field dynamo models use an approximation of the dynamo action from the small-scale motions and deliver global magnetic modes which can be cyclic, stationary, axisymmetric, and non-axisymmetric. Due to the lack of a momentum equation, MHD instabilities are not visible in this picture. However, magnetic instabilities must set in as a result of growing magnetic fields and/or buoyancy. Instabilities deliver new timescales, saturation limits and topologies to the system probably providing a key to the complex activity features observed on stars.


1975 ◽  
Vol 67 (3) ◽  
pp. 417-443 ◽  
Author(s):  
W. V. R. Maekus ◽  
M. R. E. Proctor

Past study of the large-scale consequences of forced small-scale motions in electrically conducting fluids has led to the ‘α-effect’ dynamos. Various linear kinematic aspects of these dynamos have been explored, suggesting their value in the interpretation of observed planetary and stellar magnetic fields. However, large-scale magnetic fields with global boundary conditions can not be force free and in general will cause large-scale motions as they grow. I n this paper the finite amplitude behaviour of global magnetic fields and the large-scale flows induced by them in rotating systems is investigated. In general, viscous and ohmic dissipative mechanisms both play a role in determining the amplitude and structure of the flows and magnetic fields which evolve. In circumstances where ohmic loss is the principal dissipation, it is found that determination of a geo- strophic flow is an essential part of the solution of the basic stability problem. Nonlinear aspects of the theory include flow amplitudes which are independent of the rotation and a total magnetic energy which is directly proportional to the rotation. Constant a is the simplest example exhibiting the various dynamic balances of this stabilizing mechanism for planetary dynamos. A detailed analysis is made for this case to determine the initial equilibrium of fields and flows in a rotating sphere.


Author(s):  
Arzu Özbey ◽  
Mehrdad Karimzadehkhouei ◽  
Evrim Kurtoğlu ◽  
Ali Koşar

Magnetic actuation of ferrofluids with dynamic magnetic fields is one of the most promising research areas with its wide and different potential application areas such as biomedical and micropumping applications. Ferrofluid has the potential of opening up new possibilities. To have more understanding about various fields of engineering, more research should be conducted by considering both the experimental and modeling aspects. The most important parameters determining the flow property, flow rates and overall system efficiency are the quality and the topology of magnetic fields used in these systems. Therefore, the methods of dynamic magnetic field generation constitute a central problem to obtain desired performance. This study includes modeling and simulation of ferrofluid actuation with dynamic magnetic fields by using the COMSOL software and reports that ferrofluid actuation can be successfully used and the simulation results agree well with the experimental results.


Sign in / Sign up

Export Citation Format

Share Document