scholarly journals The nature of the Galactic bulge: A view from bulge planetary nebulae and globular clusters

2011 ◽  
Vol 7 (S283) ◽  
pp. 408-409
Author(s):  
Alexander F. Kholtygin ◽  
Yulia V. Milanova ◽  
Igor' I. Nikiforov ◽  
Olga V. Vasyakina

AbstractModern data concerning the planetary nebulae (PNe) in the bulge, bar and disk of the Milky Way are used to study the chemical history of bulge. We show that the abundance pattern is similar for PNe in the bulge and Peimbert's type II PNe. We also found that the globular clusters (GCs), especially their metal-rich disk subsystem, form on metallicity maps a bar-like structure which parameters are very close to those for the Galactic bar. These results evidence an old age of the Galactic bulge and bar. We propose a scenario of the successive star formation in the bulge, bar and thin disk.

1996 ◽  
Vol 169 ◽  
pp. 403-410
Author(s):  
R.M. Rich

It is reasonable to say that if Jan Oort were alive today, he would no doubt find recent developments in the study of the Galactic bulge to be fascinating. Oort considered the Galactic bulge in two contexts. First, he was interested in the use of the RR Lyrae stars as probes to determine the distance to the Galactic Center. No doubt, Oort would have been excited about the growing evidence of the bulge's triaxiality, as well as by the debate over the age of the bulge. His second interest was in the nature of activity at the center, an issue that I will not discuss in this review. The latter also remains an unsolved problem of the Milky Way, and (based on his work) one that might have been nearer to his heart than this one. Yet the question of when the bulge formed is ultimately a question about the formation history of the Galaxy. The oldest stars (those whose ages we are certain of) are found in Galactic globular clusters, the sum total of which are ≈ 5 × 107M⊙. The field population of the bulge is ≈ 2–3 × 1010M⊙, an order of magnitude more massive than the field population of the metal poor spheroid. So if the bulge formed all at once, and early, then the Milky Way had a luminous, even cataclysmic youth. But if the bulge formed later in the history of our galaxy, as a starburst or dynamical instability of the central disk, then the young Milky Way may have been inconspicuous and primeval galaxies may be hard to find indeed. If our bulge formed very early, its stellar population might have much in common with the giant ellipticals, while a late bulge might teach us much about processes that affect galaxy evolution.


2009 ◽  
Vol 5 (S265) ◽  
pp. 344-345
Author(s):  
B. Barbuy ◽  
S. Ortolani ◽  
M. Zoccali ◽  
V. Hill ◽  
D. Minniti ◽  
...  

AbstractVery few abundance analyses of individual stars in metal-poor globular clusters in the galactic bulge are available. The main purpose of this study is to derive abundances in individual stars of such clusters, in order to establish their abundance pattern, trying to characterize the oldest bulge stellar populations.


2009 ◽  
Vol 5 (S265) ◽  
pp. 354-355
Author(s):  
Oscar Cavichia ◽  
Roberto D. D. Costa ◽  
Walter J. Maciel

AbstractNew abundances of planetary nebulae located towards the bulge of the Galaxy are derived based on observations made at LNA (Brazil). We present accurate abundances of the elements He, N, S, O, Ar, and Ne for 56 PNe located towards the galactic bulge. The data shows a good agreement with other results in the literature, in the sense that the distribution of the abundances is similar to those works. From the statistical analysis performed, we can suggest a bulge-disk interface at 2.2 kpc for the intermediate mass population, marking therefore the outer border of the bulge and inner border of the disk.


2016 ◽  
Vol 12 (S323) ◽  
pp. 184-187 ◽  
Author(s):  
A. A. Zijlstra ◽  
K. Gesicki ◽  
M. M. Miller Bertolami

AbstractPlanetary nebulae form in stellar populations with ages from 1 to 10 Gyr, and can be used to trace their star formation histories. Here we apply this to the Galactic bulge, where there are indications both for an old origin and for younger stars. We use new stellar models, which have significant different evolutionary speeds during the post-AGB phase. We apply these new models to a sample of 32 planetary nebulae with HST imaging and VLT spectroscopy. The results show evidence for an old starburst, followed by continuous star formation until at least 2Gyr ago. This agrees very well with recent analysis of colour-magnitude diagrams of the bulge. We show that the new models can also explain the [OIII] luminosity functions, and predict the uniform luminosity cut-off both in spiral galaxies and old elliptical galaxies.


2018 ◽  
Vol 616 ◽  
pp. A18 ◽  
Author(s):  
H. Ernandes ◽  
B. Barbuy ◽  
A. Alves-Brito ◽  
A. Friaça ◽  
C. Siqueira-Mello ◽  
...  

Aims. Globular clusters are tracers of the history of star formation and chemical enrichment in the early Galaxy. Their abundance pattern can help understanding their chemical enrichment processes. In particular, the iron-peak elements have been relatively little studied so far in the Galactic bulge. Methods. The main aim of this work is to verify the strength of abundances of iron-peak elements for chemical tagging in view of identifying different stellar populations. Besides, the nucleosynthesis processes that build these elements are complex, therefore observational data can help constraining theoretical models, as well as give suggestions as to the kinds of supernovae that enriched the gas before these stars formed. Results. The abundances of iron-peak elements are derived for the sample clusters, and compared with bulge field, and thick disk stars. We derived abundances of the iron-peak elements Sc, V, Mn, Cu, and Zn in individual stars of five bulge globular clusters (NGC 6528, NGC 6553, NGC 6522, NGC 6558, HP 1), and of the reference thick disk/or inner halo cluster 47 Tucanae (NGC 104). High resolution spectra were obtained with the UVES spectrograph at the Very Large Telescope over the years. Conclusions. The sample globular clusters studied span metallicities in the range –1.2 ≲ [Fe/H] ≲ 0.0. V and Sc appear to vary in lockstep with Fe, indicating that they are produced in the same supernovae as Fe. We find that Mn is deficient in metal-poor stars, confirming that it is underproduced in massive stars; Mn-over-Fe steadily increases at the higher metallicities due to a metallicity-dependent enrichment by supernovae of type Ia. Cu behaves as a secondary element, indicating its production in a weak-s process in massive stars. Zn has an alpha-like behaviour at low metallicities, which can be explained in terms of nucleosynthesis in hypernovae. At the metal-rich end, Zn decreases with increasing metallicity, similarly to the alpha-elements.


1978 ◽  
Vol 80 ◽  
pp. 247-257
Author(s):  
Beatrice M. Tinsley

Baade (1944) based his concept of stellar populations in galaxies on the HR diagrams that he inferred from the magnitude at which their brightest stars could be resolved. His type I population had bright blue supergiants like those in the disk of the Milky Way, while the brightest stars in type II were the red giants found in globular clusters. He postulated that the Hubble sequence of galaxy types from irregulars to ellipticals contained increasing proportions of Population II relative to Population I, and that similar differences characterized nuclear bulges of spirals relative to their disks. A very important revision of this picture came with the discovery by Morgan and Mayall (1957; Morgan, 1956, 1959) that the integrated blue light of the nuclear bulges of M31 and the Galaxy is dominated by strong-lined CN giants, not by the weak-lined type found in globular clusters. On the basis of integrated spectra of galaxies, Morgan developed a revised population scheme, in which the extreme types are a young-star rich population, like Baade's extreme Population I, and a young-star deficient population, analogous to Population II but generally metal-rich. Different proportions of these two types are still thought to represent the main differences among stellar populations in different regions of galaxies.


1999 ◽  
Vol 186 ◽  
pp. 52-52
Author(s):  
E.K. Grebel

Observations at high redshifts are revealing numerous interactions and ongoing mergers. Our own Milky Way is currently merging with the Sagittarius dwarf spheroidal (dSph) galaxy. Past mergers with dwarf galaxies may have contributed significantly to the Galactic halo and possibly to the thick disk. The properties of Local Group dSphs and halo globular clusters impose constraints on the merger history of the Milky Way.


2013 ◽  
Vol 9 (S298) ◽  
pp. 17-27
Author(s):  
Thomas Bensby

AbstractThick disks appear to be common in external large spiral galaxies and our own Milky Way also hosts one. The existence of a thick disk is possibly directly linked to the formation history of the host galaxy and if its properties is known it can constrain models of galaxy formation and help us to better understand galaxy formation and evolution. This brief review attempts to highlight some of the characteristics of the Galactic thick disk and how it relates to other stellar populations such as the thin disk and the Galactic bulge. Focus has been put on results from high-resolution spectroscopic data obtained during the last 10 to 15 years.


Sign in / Sign up

Export Citation Format

Share Document