scholarly journals Modeling of the IR Light Curves of the Symbiotic Recurrent Nova T CrB

2011 ◽  
Vol 7 (S281) ◽  
pp. 203-204
Author(s):  
A. A. Tatarnikova ◽  
A. M. Tatarnikov ◽  
V. I. Shenavrin

AbstractWe analyze the results of our IR photometric monitoring of T CrB during 1987-2003 and describe the ellipsoidal variability of the Roche lobe filling cool component. We obtain limits to the binary inclination of i ∈ [50,60] deg and binary mass ratio q ∈ [0.4,2] (90 per cent confidence). The mass of the hot component is therefore 1.3-3 M⊙. If the hot component of T CrB is a white dwarf, its mass will be near the Chandrasekhar limit.

1988 ◽  
Vol 108 ◽  
pp. 238-239
Author(s):  
Yoji Osaki ◽  
Masahito Hirose

SU UMa stars are one of subclasses of dwarf novae. Dwarf novae are semi-detached close binary systems in which a Roche-lobe filling red dwarf secondary loses matter and the white dwarf primary accretes it through the accretion disk. The main characteristics of SU UMa subclass is that they show two kinds of outbursts: normal outbursts and superoutbursts. In addition to the more frequent narrow outbursts of normal dwarf nova, SU UMa stars exhibit “superoutbursts”, in which stars reach about 1 magnitude brighter and stay longer than in normal outburst. Careful photometric studies during superoutburst have almost always revealed the “superhumps”: periodic humps in light curves with a period very close to the orbital period of the system. However, the most curious of all is that this superhump period is not exactly equal to the orbital period, but it is always longer by a few percent than the orbital period.


2020 ◽  
Vol 72 (5) ◽  
Author(s):  
Mariko Kato ◽  
Izumi Hachisu

Abstract We have examined the optical/X-ray light curves of seven well-observed recurrent novae, V745 Sco, M31N 2008-12a, LMC N 1968, U Sco, RS Oph, LMC N 2009a, T Pyx, and one recurrent nova candidate LMC N 2012a. Six novae out of the eight show a simple relation that the duration of supersoft X-ray source (SSS) phase is 0.70 times the total duration of the outburst (= X-ray turnoff time), i.e., tSSS = 0.70 toff, the total duration of which ranges from 10 to 260 d. These six recurrent novae show a broad rectangular X-ray light curve shape, the first half-period of which is highly variable in the X-ray count rate. The SSS phase also corresponds to an optical plateau phase that indicates a large accretion disk irradiated by a hydrogen-burning white dwarf (WD). The two other recurrent novae, T Pyx and V745 Sco, show a narrow triangular-shaped X-ray light curve without an optical plateau phase. Their relations between tSSS and toff are rather different from the above six recurrent novae. We also present theoretical SSS durations for recurrent novae with various WD masses and stellar metallicities (Z = 0.004, 0.01, 0.02, and 0.05) and compare them with the observed durations of these recurrent novae. We show that SSS duration is a good indicator of WD mass in recurrent novae with a broad rectangular X-ray light curve shape.


2011 ◽  
Vol 7 (S281) ◽  
pp. 201-202
Author(s):  
Irina Voloshina ◽  
Vladimir Metlov

AbstractThe recurrent nova RS Oph is a long period (~455 days) binary system consisting of a hot white dwarf with mass close to the Chandrasekhar limit and an M-type giant secondary. Here we present the results of photometric observations of this nova which were made during recent years with the telescopes of the Sternberg Astronomical Institute in Crimea.


1987 ◽  
Vol 93 ◽  
pp. 681-685
Author(s):  
R.E. Williams ◽  
M.M. Phillips ◽  
S.R. Heathcote

AbstractCertain cataclysmic variables may evolve into low mass X-ray binaries if the white dwarfs can steadily accrete sufficient mass to exceed the Chandrasekhar limit. We present spectra of a recurrent nova and a low mass X-ray binary which are very similar to each other, and are also unusual for the strengths of the observed He II emission. We suggest that this similarity is not coincidental, but is evidence for an evolutionary link between the two classes of objects. A hydrogen depletion in the accreting gas is implied from the emission line fluxes, and may be an important parameter in determining whether accreted gas remains bound to the white dwarf, enabling eventual core collapse to occur.


2011 ◽  
Vol 7 (S281) ◽  
pp. 193-194
Author(s):  
D. I. Sahman ◽  
V. S. Dhillon

AbstractIf recurrent novae (RNe) are progenitors of Type Ia Supernovae (SNe Ia), their white dwarfs (WD) must have masses close to the Chandrasekhar limit. The most reliable means of determining WD masses in RNe is dynamically, via radial-velocity and rotational-broadening measurements of the companion star. Such measurements require the system to be both eclipsing and to show absorption features from the secondary star. The only other reliable RNe mass estimate is for U Sco, which has a WD mass of 1.55 ± 0.24 M⊙ (Thoroughgood et al. 2001).We present new time-resolved, intermediate-resolution spectroscopy of the eclipsing RN CI Aql during quiescence. We find the mass of the WD to be 1.02 ± 0.08 M⊙ and the mass of the secondary star to be 2.41 ± 0.2 M⊙. We estimate the radius of the secondary to be 2.10 ± 0.07 R⊙. The high mass ratio of q=2.37 ± 0.15 and the high secondary star mass suggests that mass transfer occurs on a thermal timescale. We suggest that CI Aql is evolving into a supersoft x-ray source, and ultimately will explode as an SN Ia.


Author(s):  
M. V. Suslikov ◽  
◽  
A. I. Kolbin ◽  
◽  

In this work we performed a photometric and spectral study of the polar V379 Vir. We used the modeling of the IR light curves based on a simple model of cyclotrone radiation source, the method of synthetic photometry to fit the observed spectral distribution of the energy, as well as the modeling of the magnetic curve obtained from Zeeman splitting of the Hβ line to determine the parameters of the system. We managed to estimate the temperature of the white dwarf Teff = 11 450 K, the masses and radii of the primary and secondary components: M1 = 0.696 M , R1 = 0.011 R , M2 = 0.105 M , R2 = 0.14 R . The separation of the components was about 0.6 AU, and the inclination i lies in the range 47—60◦.


2020 ◽  
Vol 29 (1) ◽  
pp. 72-80 ◽  
Author(s):  
Fatemeh Davoudi ◽  
Atila Poro ◽  
Fahri Alicavus ◽  
Afshin Halavati ◽  
Saeed Doostmohammadi ◽  
...  

AbstractNew observations of the eclipsing binary system V1848 Ori were carried out using the V filter resulting in a determination of new times of minima and new ephemeris were obtained. We presented the first complete analysis of the system’s orbital period behavior and analysis of O-C diagram done by the GA and MCMC approaches in OCFit code. The O-C diagram demonstrates a sinusoidal trend in the data; this trend suggests a cyclic change caused by the LITE effect with a period of 10.57 years and an amplitude of 7.182 minutes. It appears that there is a third body with mass function of f (m3) = 0.0058 M⊙ in this binary system. The light curves were analyzed using the Wilson-Devinney code to determine some geometrical and physical parameters of the system. These results show that V1848 Ori is a contact W UMa binary system with the mass ratio of q = 0.76 and a weak fillout factor of 5.8%. The O’Connell effect was not seen in the light curve and there is no need to add spot.


2021 ◽  
Vol 503 (4) ◽  
pp. 5397-5408
Author(s):  
Mukremin Kilic ◽  
P Bergeron ◽  
Simon Blouin ◽  
A Bédard

ABSTRACT We present an analysis of the most massive white dwarf candidates in the Montreal White Dwarf Database 100 pc sample. We identify 25 objects that would be more massive than $1.3\, {\rm M}_{\odot }$ if they had pure H atmospheres and CO cores, including two outliers with unusually high photometric mass estimates near the Chandrasekhar limit. We provide follow-up spectroscopy of these two white dwarfs and show that they are indeed significantly below this limit. We expand our model calculations for CO core white dwarfs up to M = 1.334 M⊙, which corresponds to the high-density limit of our equation-of-state tables, ρ = 109 g cm−3. We find many objects close to this maximum mass of our CO core models. A significant fraction of ultramassive white dwarfs are predicted to form through binary mergers. Merger populations can reveal themselves through their kinematics, magnetism, or rapid rotation rates. We identify four outliers in transverse velocity, four likely magnetic white dwarfs (one of which is also an outlier in transverse velocity), and one with rapid rotation, indicating that at least 8 of the 25 ultramassive white dwarfs in our sample are likely merger products.


2001 ◽  
Vol 327 (4) ◽  
pp. 1323-1333 ◽  
Author(s):  
T. D. Thoroughgood ◽  
V. S. Dhillon ◽  
S. P. Littlefair ◽  
T. R. Marsh ◽  
D. A. Smith
Keyword(s):  

Author(s):  
E. Semkov ◽  
S. Ibryamov ◽  
S. Peneva ◽  
A. Mutafov

A phenomenon with a significant role in stellar evolution is the FU Orionis (FUor) type of outburst. The first three (classical) FUors (FU Ori, V1515 Cyg and V1057 Cyg) are well-studied and their light curves are published in the literature. But recently, over a dozen new objects of this type were discovered, whose photometric history we do not know well. Using recent data from photometric monitoring and data from the photographic plate archives we aim to study, the long-term photometric behavior of FUor and FUor-like objects. The construction of the historical light curves of FUors could be very important for determining the beginning of the outburst, the time to reach the maximum light, the rate of increase and decrease in brightness, the pre-outburst variability of the star. So far we have published our results for the light curves of V2493 Cyg, V582 Aur, Parsamian 21 and V1647 Ori. In this paper we present new data that describe more accurate the photometric behavior of these objects. In comparing our results with light curves of the well-studied FUors (FU Ori, V1515 Cyg and V1057 Cyg), we conclude that every object shows different photometric behavior. Each known FUor has a different rate of increase and decrease in brightness and a different light curve shape.


Sign in / Sign up

Export Citation Format

Share Document