fu ori
Recently Published Documents


TOTAL DOCUMENTS

49
(FIVE YEARS 13)

H-INDEX

10
(FIVE YEARS 3)

2022 ◽  
Vol 6 (1) ◽  
pp. 6
Author(s):  
Lynne A. Hillenbrand ◽  
Antonio C. Rodriguez

Abstract Disks around young stellar objects (YSOs) consist of material that thermally emits the energy provided by a combination of passive heating from the central star, and active, viscous heating due to mass accretion. FU Ori stars are YSOs with substantially enhanced accretion rates in their inner disk regions. As a disk transitions from standard low-state, to FU Ori-like high-state accretion, the outburst manifests through photometric brightening over a broad range of wavelengths. We present results for the expected amplitudes of the brightening between ∼4000 Å and 8 μm—the wavelength range where FU Ori type outburst events are most commonly detected. Our model consists of an optically thick passive + active steady-state accretion disk with low and high accretion states.


2022 ◽  
Vol 924 (2) ◽  
pp. L23
Author(s):  
Wafa Zakri ◽  
S. T. Megeath ◽  
William J. Fischer ◽  
Robert Gutermuth ◽  
Elise Furlan ◽  
...  

Abstract At least half of a protostar’s mass is accreted in the Class 0 phase, when the central protostar is deeply embedded in a dense, infalling envelope. We present the first systematic search for outbursts from Class 0 protostars in the Orion clouds. Using photometry from Spitzer/IRAC spanning 2004 to 2017, we detect three outbursts from Class 0 protostars with ≥2 mag changes at 3.6 or 4.5 μm. This is comparable to the magnitude change of a known protostellar FU Ori outburst. Two are newly detected bursts from the protostars HOPS 12 and 124. The number of detections implies that Class 0 protostars burst every 438 yr, with a 95% confidence interval of 161 to 1884 yr. Combining Spitzer and WISE/NEOWISE data spanning 2004–2019, we show that the bursts persist for more than nine years with significant variability during each burst. Finally, we use 19–100 μm photometry from SOFIA, Spitzer, and Herschel to measure the amplitudes of the bursts. Based on the burst interval, a duration of 15 yr, and the range of observed amplitudes, 3%–100% of the mass accretion during the Class 0 phase occurs during bursts. In total, we show that bursts from Class 0 protostars are as frequent, or even more frequent, than those from more evolved protostars. This is consistent with bursts being driven by instabilities in disks triggered by rapid mass infall. Furthermore, we find that bursts may be a significant, if not dominant, mode of mass accretion during the Class 0 phase.


2021 ◽  
Vol 923 (2) ◽  
pp. 270
Author(s):  
Hauyu Baobab Liu ◽  
An-Li Tsai ◽  
Wen Ping Chen ◽  
Jin Zhong Liu ◽  
Xuan Zhang ◽  
...  

Abstract Previous observations have shown that the ≲10 au, ≳400 K hot inner disk of the archetypal accretion outburst young stellar object, FU Ori, is dominated by viscous heating. To constrain dust properties in this region, we have performed radio observations toward this disk using the Karl G. Jansky Very Large Array in 2020 June–July, September, and November. We also performed complementary optical photometric monitoring observations. We found that the dust thermal emission from the hot inner disk mid-plane of FU Ori has been approximately stationary and the maximum dust grain size is ≳1.6 mm in this region. If the hot inner disk of FU Ori, which is inward of the 150–170 K water snowline, is turbulent (e.g., corresponding to a Sunyaev & Shakura viscous α t ≳ 0.1), or if the actual maximum grain size is still larger than the lower limit we presently constrain, then as suggested by the recent analytical calculations and the laboratory measurements, water-ice-free dust grains may be stickier than water-ice-coated dust grains in protoplanetary disks. Additionally, we find that the free–free emission and the Johnson B- and V-band magnitudes of these binary stars were brightening in 2016–2020. The optical and radio variability might be related to the dynamically evolving protostellar- or disk-accretion activities. Our results highlight that the hot inner disks of outbursting objects are important laboratories for testing models of dust grain growth. Given the active nature of such systems, to robustly diagnose the maximum dust grain sizes, it is important to carry out coordinated multiwavelength radio observations.


2020 ◽  
Vol 644 ◽  
pp. A135
Author(s):  
Michał Siwak ◽  
Waldemar Ogłoza ◽  
Jerzy Krzesiński

Context. We investigate small-scale light variations in V646 Pup occurring on timescales of days, weeks, and years. Aims. We aim to investigate whether this variability is similar to that observed in FU Ori. Methods. We observed V646 Pup on six occasions at the SAAO and CTIO between 2013 and 2018 with Johnson and Sloan filters, typically using a one-day cadence maintained for two to four weeks. We also utilised the public-domain 1512-day-long ASAS-SN light curve and TESS photometry obtained in 2019 over 24.1 days with a 30 min cadence. New SAAO low-resolution spectra assist in updating major disc parameters, while the archival high-resolution Keck spectra are used to search for temporal changes in the disc rotational profiles. Results. The ground-based observations confirm the constantly decreasing brightness of V646 Pup at the rate of 0.018 mag yr−1. Precise i-band sensitive TESS data show that the slight, 0.005−0.01 mag, light variations imposed on this general trend do consist of a few independent wave trains of an apparently time-coherent nature. Assuming that this is typical situation, based on an analysis of colour–magnitude diagrams obtained for earlier epochs, we were able to make a preliminarily inference that the bulk of the light changes observed could be due to the rotation of disc photosphere inhomogeneities, arising between 10–12 R⊙ from the star. We do not exclude the possibility that these inhomogeneities could also manifest themselves in the rotational profiles of the disc, as obtained from the high-resolution spectra. Assuming Keplerian rotation of these inhomogeneities, we give a preliminary determination of the stellar mass at 0.7–0.9 M⊙. Conclusions. Over certain weeks, at least, V646 Pup has shown time-coherent light variability pattern(s) that could be explained by the rotation of an inhomogeneous disc photosphere. These preliminary results are similar to those better established for FU Ori, which suggests a common driving mechanism(s).


2020 ◽  
Vol 644 ◽  
pp. A128
Author(s):  
Inma Sepúlveda ◽  
Robert Estalella ◽  
Guillem Anglada ◽  
Rosario López ◽  
Angels Riera ◽  
...  

Aims. In this paper, we study the dense gas of the molecular cloud LDN 1287 (L1287), which harbors a double FU Ori system, an energetic molecular outflow, and a still-forming cluster of deeply embedded low-mass young stellar objects that show a high level of fragmentation. Methods. We present optical Hα and [SII], and VLA NH3 (1, 1) and (2, 2) observations with an angular resolution of ~3′′.5. The observed NH3 spectra have been analyzed with the Hyperfine Structure tool, fitting simultaneously three different velocity components. Results. The NH3 emission from L1287 comes from four different structures: a core associated with RNO 1, a guitar-shaped core (the Guitar) and two interlaced filaments (the blue and red filaments) roughly centered toward the binary FU Ori system RNO 1B/1C and its associated cluster. Regarding the Guitar core, there are clear signatures of gas infall onto a central mass that has been estimated to be ~2.1M⊙. Regarding the two filaments, they have radii of ~0.03 pc, masses per unit length of ~50M⊙ pc−1, and are in near isothermal equilibrium. A central cavity is identified, probably related with the outflow and also revealed by the Hα and [SII] emission, with several young stellar objects near its inner walls. Both filaments show clear signs of perturbation by the high-velocity gas of the outflows driven by one or several young stellar objects of the cluster. The blue and red filaments are coherent in velocity and have nearly subsonic gas motions, except at the position of the embedded sources. Velocity gradients across the blue filament can be interpreted either as infalling material onto the filament or rotation. Velocity gradients along the filaments are interpreted as infall motions toward a gravitational well at the intersection of the two filaments.


2020 ◽  
Vol 635 ◽  
pp. A196
Author(s):  
Eduard I. Vorobyov ◽  
Alexandr M. Skliarevskii ◽  
Vardan G. Elbakyan ◽  
Michihiro Takami ◽  
Hauyu Baobab Liu ◽  
...  

Aims. We study the origin of tail-like structures recently detected around the disk of SU Aurigae and several FU Orionis-type stars. Methods. Dynamic protostellar disks featuring ejections of gaseous clumps and quiescent protoplanetary disks experiencing a close encounter with an intruder star were modeled using the numerical hydrodynamics code FEOSAD. Both the gas and dust dynamics were taken into account, including dust growth and mutual friction between the gas and dust components. Only plane-of-the-disk encounters were considered. Results. Ejected clumps produce a unique type of tail that is characterized by a bow-shock shape. Such tails originate from the supersonic motion of ejected clumps through the dense envelope that often surrounds young gravitationally unstable protostellar disks. The ejected clumps either sit at the head of the tail-like structure or disperse if their mass is insufficient to withstand the head wind of the envelope. On the other hand, close encounters with quiescent protoplanetary disks produce three types of the tail-like structure; we define these as pre-collisional, post-collisional, and spiral tails. These tails can in principle be distinguished from one another by particular features of the gas and dust flow in and around them. We find that the brown-dwarf-mass intruders do not capture circumintruder disks during the encounter, while the subsolar-mass intruders can acquire appreciable circumintruder disks with elevated dust-to-gas ratios, which can ease their observational detection. However, this is true only for prograde collisions; the retrograde intruders fail to collect appreciable amounts of gas or dust from the disk of the target. The mass of gas in the tail varies in the range 0.85–11.8 MJup, while the total mass of dust lies in the 1.75–30.1 M⊕ range, with the spiral tails featuring the highest masses. The predicted mass of dust in the model tail-like structures is therefore higher than what was inferred for similar structures in SU Aur, FU Ori, and Z CMa, making their observational detection feasible. Conclusions. Tail-like structures around protostellar and protoplanetary disks can be used to infer interesting phenomena such as clump ejection or close encounters. In particular, the bow-shock morphology of the tails could point to clump ejections as a possible formation mechanism. Further numerical and observational studies are needed to better understand the detectability and properties of the tails.


2020 ◽  
Vol 495 (3) ◽  
pp. 3494-3514 ◽  
Author(s):  
Zhaohuan Zhu ◽  
Yan-Fei Jiang ◽  
James M Stone

ABSTRACT FU Ori is the prototype of FU Orionis systems that are outbursting protoplanetary discs. Magnetic fields in FU Ori’s accretion discs have previously been detected using spectropolarimetry observations for Zeeman effects. We carry out global radiation ideal MHD simulations to study FU Ori’s inner accretion disc. We find that (1) when the disc is threaded by vertical magnetic fields, most accretion occurs in the magnetically dominated atmosphere at z ∼ R, similar to the ‘surface accretion’ mechanism in previous locally isothermal MHD simulations. (2) A moderate disc wind is launched in the vertical field simulations with a terminal speed of ∼300–500 km s−1 and a mass-loss rate of 1–10 per cent the disc accretion rate, which is consistent with observations. Disc wind fails to be launched in simulations with net toroidal magnetic fields. (3) The disc photosphere at the unit optical depth can be either in the wind launching region or the accreting surface region. Magnetic fields have drastically different directions and magnitudes between these two regions. Our fiducial model agrees with previous optical Zeeman observations regarding both the field directions and magnitudes. On the other hand, simulations indicate that future Zeeman observations at near-IR wavelengths or towards other FU Orionis systems may reveal very different magnetic field structures. (4) Due to energy loss by the disc wind, the disc photosphere temperature is lower than that predicted by the thin disc theory, and the previously inferred disc accretion rate may be lower than the real accretion rate by a factor of ∼2–3.


2019 ◽  
Vol 491 (1) ◽  
pp. 504-514 ◽  
Author(s):  
Nicolás Cuello ◽  
Fabien Louvet ◽  
Daniel Mentiplay ◽  
Christophe Pinte ◽  
Daniel J Price ◽  
...  

ABSTRACT Tidal encounters in star clusters perturb discs around young protostars. In Cuello et al., we detailed the dynamical signatures of a stellar flyby in both gas and dust. Flybys produce warped discs, spirals with evolving pitch angles, increasing accretion rates, and disc truncation. Here, we present the corresponding observational signatures of these features in optical/near-infrared scattered light and (sub) millimetre continuum and CO line emission. Using representative prograde and retrograde encounters for direct comparison, we post-process hydrodynamical simulations with radiative transfer methods to generate a catalogue of multiwavelength observations. This provides a reference to identify flybys in recent near-infrared and submillimetre observations (e.g. RW Aur, AS 205, HV Tau and DO Tau, FU Ori, V2775 Ori, and Z CMa).


2019 ◽  
Vol 884 (2) ◽  
pp. 146 ◽  
Author(s):  
Michihiro Takami ◽  
Tsu-Sheng Chen ◽  
Hauyu Baobab Liu ◽  
Naomi Hirano ◽  
Ágnes Kóspál ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document