scholarly journals Radio emission from the bow shock of G2

2013 ◽  
Vol 9 (S303) ◽  
pp. 312-314
Author(s):  
P. Crumley ◽  
P. Kumar

AbstractThe radio flux from the synchrotron emission of electrons accelerated in the forward bow shock of G2 is expected to have peaked when the forward shock passes close to the pericenter from the Galactic center, around autumn of 2013. This radio flux is model dependent. We find that if G2 were to be a momentum-supported bow shock of a faint star with a strong wind, the radio synchrotron flux from the forward-shock heated ISM is well below the quiescent radio flux of Sgr A*. By contrast, if G2 is a diffuse cloud, the radio flux is predicted to be much larger than the quiescent radio flux and therefore should have already been detected or will be detected shortly. No such radiation has been observed to date. Radio measurements can reveal the nature of G2 well before G2 completes its periapsis passage.

1989 ◽  
Vol 136 ◽  
pp. 535-541 ◽  
Author(s):  
Jun-Hui Zhao ◽  
R. D. Ekers ◽  
W. M. Goss ◽  
K. Y. Lo ◽  
Ramesh Narayan

We investigate the long-term flux density variations of the compact radio source Sgr A∗ at the galactic center by combining recent VLA observations with previous Green Bank interferometer data. We present radio flux density light-curves for Sgr A∗ at 20, 11, 6 and 3.7 cm from 1974 to 1987. Long-term variability with a timescale of at least 5 years is seen at 20 cm and there is evidence for more rapid variations at the shorter wavelengths. The variability timescales at 20, 11 and 6 cm fit the λ2 scaling predicted by the theory of refractive scintillation suggesting that the variability could be due to this cause. However, the timescales are relatively short, implying an unusually high velocity in the scattering screen. The modulation index of the variability is large and relatively independent of wavelength.


2013 ◽  
Vol 9 (S303) ◽  
pp. 150-152 ◽  
Author(s):  
N. Sabha ◽  
M. Zamaninasab ◽  
A. Eckart ◽  
L. Moser

AbstractWe find a convex-like feature at a distance of 0.68 pc (17″) from the position of the supermassive black hole, Sgr A*, at the center of the nuclear stellar cluster. This feature resembles a stellar bow shock with a symmetry axis pointing to the center. We discuss the possible nature of the feature and the implications of its alignment with other dusty comet-like objects inside the central parsec.


1989 ◽  
Vol 136 ◽  
pp. 287-292 ◽  
Author(s):  
F. Yusef-Zadeh ◽  
C. M. Telesco ◽  
R. Decher

We have used the 20-pixel IR camera to observe thermal IR emission from dust associated with the radio continuum Arc near the Galactic center and the cluster of HII regions in the immediate vicinity of Sgr A East. We detected strong 10μm emission from the eastern and western arched filaments (G0.1+0.08), from an unusual pistol-shaped structure known as G0.15–0.05 and from the brightest member of the Sgr A East HII region. Spatial maps of these features at 10μm with a resolution of 4.1″ × 4.2″ are presented and are compared with 5-GHz radio images. We find a general spatial correlation between the ionized gas and the dust distributions. The ratio of IR to radio flux densities is significantly different in the eastern and western arched filaments, which suggests that the source of heating has a softer spectrum along the eastern arched filaments. In addition, the ratio of IR to radio flux densities, which is typically ~10 in normal Galactic HII regions excited by O stars, is at least a factor of two higher than this value in almost all the sources we have observed. This suggests that additional mechanisms other than trapped Lymanαradiation should be present in heating the dust, e.g. stochastic heating of small dust grains by energetic particles associated with the nonthermal filaments.


2013 ◽  
Vol 9 (S303) ◽  
pp. 147-149
Author(s):  
L. O. Sjouwerman ◽  
Y. M. Pihlström

AbstractWe report on the detection of 36 and 44 GHz Class I methanol (CH3OH) maser emission in the Sagittarius A (Sgr A) complex with the Karl G. Jansky Very Large Array (VLA). These VLA observations show that the Sgr A complex harbors at least three different maser tracers of shocked regions in the radio regime. The 44 GHz masers correlate with the positions and velocities of previously detected 36 GHz CH3OH masers, but less with 1720 MHz OH masers. Our detections agree with theoretical predictions that the densities and temperatures conducive for 1720 MHz OH masers may also produce 36 and 44 GHz CH3OH maser emission. However, many 44 GHz masers do not overlap with 36 GHz methanol masers, suggesting that 44 GHz masers also arise in regions too hot and too dense for 36 GHz masers to form. This agrees with the non-detection of 1720 MHz OH masers in the same area, which are thought to be excited under even cooler and less dense conditions. We speculate that the geometry of the 36 GHz masers outlines the current location of a shock front.


2013 ◽  
Vol 9 (S303) ◽  
pp. 318-319 ◽  
Author(s):  
P. C. Fragile ◽  
P. Anninos ◽  
S. D. Murray

AbstractUsing three-dimensional, moving-mesh simulations, we investigate the future evolution of the recently discovered gas cloud G2 traveling through the galactic center. From our simulations we expect an average feeding rate onto Sgr A* in the range of (5−19) × 10−8M⊙ yr−1 beginning in 2014. This accretion varies by less than a factor of three on timescales ∼ 1 month, and shows no more than a factor of 10 difference between the maximum and minimum observed rates within any given model. These rates are comparable to the current estimated accretion rate in the immediate vicinity of Sgr A*, although they represent only a small (< 10%) increase over the current expected feeding rate at the effective inner boundary of our simulations (racc = 750 RS ∼ 1015 cm). We also explore multiple possible equations of state to describe the gas. In examining the Br-γ light curves produced from our simulations, we find that all of our isothermal models predict significant (factor of 10) enhancements in the luminosity of G2 as it approaches pericenter, in conflict with observations. Models that instead allow the cloud to heat as it is compressed do better at matching observations.


2020 ◽  
Vol 72 (2) ◽  
Author(s):  
Yoshiaki Sofue

Abstract Propagation of fast-mode magnetohydrodynamic (MHD) compression waves is traced in the Galactic Center with a poloidal magnetic cylinder. MHD waves ejected from the nucleus are reflected and guided along the magnetic field, exhibiting vertically stretched fronts. The radio threads and non-thermal filaments are explained as due to tangential views of the waves driven by sporadic activity in Sgr A$^*$, or by multiple supernovae. In the latter case, the threads could be extremely deformed relics of old supernova remnants exploded in the nucleus.


2020 ◽  
Vol 72 (3) ◽  
Author(s):  
Masato Tsuboi ◽  
Yoshimi Kitamura ◽  
Takahiro Tsutsumi ◽  
Ryosuke Miyawaki ◽  
Makoto Miyoshi ◽  
...  

Abstract The Galactic Center IRS 13E cluster is a very intriguing infrared object located at ${\sim } 0.13$ pc from Sagittarius A$^\ast$ (Sgr A$^\ast$) in projection distance. There are arguments both for and against the hypothesis that a dark mass like an intermediate mass black hole (IMBH) exists in the cluster. We recently detected the rotating ionized gas ring around IRS 13E3, which belongs to the cluster, in the H30$\alpha$ recombination line using ALMA. The enclosed mass is derived to be $M_{\mathrm{encl.}}\simeq 2\times 10^{4}\, M_\odot$, which agrees with an IMBH and is barely less than the astrometric upper limit mass of an IMBH around Sgr A$^\ast$. Because the limit mass depends on the true three-dimensional (3D) distance from Sgr A$^\ast$, it is very important to determine it observationally. However, the 3D distance is indefinite because it is hard to determine the line-of-sight (LOS) distance by usual methods. We attempt here to estimate the LOS distance from spectroscopic information. The CH$_3$OH molecule is easily destroyed by the cosmic rays around Sgr A$^{\ast }$. However, we detected a highly excited CH$_3$OH emission line in the ionized gas stream associated with IRS 13E3. This indicates that IRS 13E3 is located at $r\gtrsim 0.4$ pc from Sgr A$^{\ast }$.


1998 ◽  
Vol 164 ◽  
pp. 323-324
Author(s):  
H. Falcke ◽  
W. M. Goss ◽  
L. C. Ho ◽  
H. Matsuo ◽  
P. Teuben ◽  
...  

AbstractWe report first results from a multiwavelength campaign to measure the simultaneous spectrum of Sgr A* from cm to mm wavelengths. The observations confirm that the previously detected submm-excess is not due to variability; the presence of an ultracompact component with a size of a few Schwarzschild radii is inferred. In a VLA survey of LINER galaxies, we found Sgr A*-like nuclei in one quarter of the galaxies searched, suggesting a link between those low-power AGN and the Galactic Center.


Sign in / Sign up

Export Citation Format

Share Document