scholarly journals Rotational velocities of single and binary O-type stars in the Tarantula Nebula

2014 ◽  
Vol 9 (S307) ◽  
pp. 76-81
Author(s):  
O. H. Ramírez-Agudelo ◽  
H. Sana ◽  
A. de Koter ◽  
S. Simón-Díaz ◽  
S. E. de Mink ◽  
...  

AbstractRotation is a key parameter in the evolution of massive stars, affecting their evolution, chemical yields, ionizing photon budget, and final fate. We determined the projected rotational velocity, υe sin i, of ~330 O-type objects, i.e. ~210 spectroscopic single stars and ~110 primaries in binary systems, in the Tarantula nebula or 30 Doradus (30 Dor) region. The observations were taken using VLT/FLAMES and constitute the largest homogeneous dataset of multi-epoch spectroscopy of O-type stars currently available. The most distinctive feature of the υe sin i distributions of the presumed-single stars and primaries in 30 Dor is a low-velocity peak at around 100 km s−1. Stellar winds are not expected to have spun-down the bulk of the stars significantly since their arrival on the main sequence and therefore the peak in the single star sample is likely to represent the outcome of the formation process. Whereas the spin distribution of presumed-single stars shows a well developed tail of stars rotating more rapidly than 300 km s−1, the sample of primaries does not feature such a high-velocity tail. The tail of the presumed-single star distribution is attributed for the most part – and could potentially be completely due – to spun-up binary products that appear as single stars or that have merged. This would be consistent with the lack of such post-interaction products in the binary sample, that is expected to be dominated by pre-interaction systems. The peak in this distribution is broader and is shifted toward somewhat higher spin rates compared to the distribution of presumed-single stars. Systems displaying large radial velocity variations, typical for short period systems, appear mostly responsible for these differences.

2000 ◽  
Vol 175 ◽  
pp. 668-680 ◽  
Author(s):  
Douglas R. Gies

AbstractModels of close binary evolution predict that mass gainers will be spun up to speeds close to the critical rotational velocity while the mass donors will appear as stripped down He stars, white dwarfs, or neutron stars. I argue here that the mass gainers are closely related to the Be stars. I present a list of the known Be binary systems which consists of those with bright, Roche-filling companions and those with faint or undetected companions. Notably absent are Be + B systems which are expected if the Be phase is a stage in the life of a single star. We now have the first example of a Be + He star system in the binary, ϕ Per, and taken together with the well known Be X-ray binaries, there is clear evidence that some fraction of Be stars are created in binaries; whether all such rapid rotators are so formed remains unknown.


2020 ◽  
Vol 643 ◽  
pp. A98
Author(s):  
J. Hagelberg ◽  
N. Engler ◽  
C. Fontanive ◽  
S. Daemgen ◽  
S. P. Quanz ◽  
...  

Context. Recent surveys indicate that planets in binary systems are more abundant than previously thought, which is in agreement with theoretical work on disc dynamics and planet formation in binaries. So far, most observational surveys, however, have focused on short-period planets in binaries, thus little is known about the occurrence rates of planets on longer periods (≥10 au). Aims. In order to measure the abundance and physical characteristics of wide-orbit giant exoplanets in binary systems, we have designed the “VIsual Binary Exoplanet survey with Sphere” (VIBES) to search for planets in visual binaries. It uses the SPHERE instrument at VLT to search for planets in 23 visual binary and four visual triple systems with ages of <145 Myr and distances of <150 pc. Methods. We used the IRDIS dual-band imager on SPHERE to acquire high-contrast images of the sample targets. For each binary, the two components were observed at the same time with a coronagraph masking only the primary star. For the triple star, the tight components were treated as a single star for data reduction. This enabled us to effectively search for companions around 50 individual stars in binaries and four binaries in triples. Results. We derived upper limits of <13.7% for the frequency of sub-stellar companions around primaries in visual binaries, <26.5% for the fraction of sub-stellar companions around secondaries in visual binaries, and an occurrence rate of <9.0% for giant planets and brown dwarfs around either component of visual binaries. We have combined our observations with literature measurements to astrometrically confirm, for the first time, that 20 binaries and two triple systems, which were previously known, are indeed physically bound. Finally, we discovered a third component of the binary HD 121336. Conclusions. The upper limits we derived are compatible with planet formation through the core accretion and the gravitational instability processes in binaries. These limits are also in line with limits found for single star and circumbinary planet search surveys.


1979 ◽  
Vol 46 ◽  
pp. 77-88
Author(s):  
Edward L. Robinson

Three distinct kinds of rapid variations have been detected in the light curves of dwarf novae: rapid flickering, short period coherent oscillations, and quasi-periodic oscillations. The rapid flickering is seen in the light curves of most, if not all, dwarf novae, and is especially apparent during minimum light between eruptions. The flickering has a typical time scale of a few minutes or less and a typical amplitude of about .1 mag. The flickering is completely random and unpredictable; the power spectrum of flickering shows only a slow decrease from low to high frequencies. The observations of U Gem by Warner and Nather (1971) showed conclusively that most of the flickering is produced by variations in the luminosity of the bright spot near the outer edge of the accretion disk around the white dwarf in these close binary systems.


2005 ◽  
Vol 57 (6) ◽  
pp. 983-993 ◽  
Author(s):  
Yuan-Gui Yang ◽  
Sheng-Bang Qian ◽  
Li-Ying Zhu ◽  
Jia-Jia He ◽  
Yuan Jin-Zhao
Keyword(s):  

2006 ◽  
Vol 2 (S236) ◽  
pp. 167-176 ◽  
Author(s):  
Petr Pravec ◽  
A. W. Harris ◽  
B. D. Warner

AbstractOf the nearly 3900 near-Earth asteroids (NEAs) known as of June 2006, 325 have estimated rotation periods, with most of those determined by lightcurve analysis led by a few dedicated programs. NEAs with diameters down to 10 meters have been sampled. Observed spin distribution shows a major changing point around diameter of 200 meters. Larger NEAs show a barrier against spins faster than 11 d−1 (period about 2.2 h) that shifts to slower rates (longer periods) with increasing lightcurve amplitude (i.e., with increasing equatorial elongation). The spin barrier is interpreted as a critical spin rate for bodies in a gravity regime; NEAs larger than 200 meters are predominantly bodies with tensile strength too low to withstand a centrifugal acceleration for rotation faster than the critical spin rate. The cohesionless spin barrier disappears at sizes less than 200 meters where most objects rotate too fast to be held together by self-gravitation only, so a cohesion is implied in the smaller NEAs.The distribution of NEA spin rates in the cohesionless size range (D0.2 km) is highly non-Maxwellian, suggesting that mechanisms other than just collisions have been at work. There is a pile up just in front of the barrier, at periods 2–3 h. It may be related to a spin up mechanism crowding asteroids to the barrier. An excess of slow rotators is observed at periods longer than 30 hours. A spin-down mechanism has no obvious lower limit on spin rate; periods as long as tens of days have been observed.Most NEAs appear to be in their basic spin states with rotation around principal axis with maximum moment of inertia. Tumbling objects (i.e., bodies in excited, non-principal axis rotation) are present and actually predominate among slow rotators with estimated damping timescales longer than the age of the solar system. A few tumblers observed among fast rotating coherent objects appear to be either more rigid or younger than the larger (cohesionless) tumblers.An abundant population of binary systems has been found among NEAs. The fraction of binaries among NEAs larger than 0.3 km has been estimated to be 15 ± 4%. Primaries of binary systems concentrate at fast spin rates (periods 2–3 h) and low amplitudes, i.e., they lie just below the cohesionless spin barrier. The total angular momentum content in binary systems suggests that they formed from parent bodies spinning at the critical rate. The fact that a very similar population of binaries has been found among small main belt asteroids suggests a binary formation mechanism that may not be related to close encounters with the terrestrial planets.


1998 ◽  
Vol 11 (1) ◽  
pp. 371-371
Author(s):  
S. Narusawa ◽  
A. Yamasaki ◽  
Y. Nakamura

Although the evolution of binary systems has been qualitatively interpreted with the evolutionary scenario, the quantitative interpretation of any observed system is still unsatisfactory due to the difficulty of the quantitative treatment of mass and angular momentum transfer/loss. To reach a true understanding of the evolution of binary systems, we have to accumulate more observational evidence. So far, we have observed several binaries that are short-period and noncontact, and found the existence of extremely small-mass systems. In the present paper, we study another short-period (P=0.659d), noncontact, eclipsing binary system, V392 Ori. We have made photometric and spectroscopic observations of V392 Ori. The light curves are found to vary, suggesting the existence of circumstellar matter around the system. Combining the photometric and spectroscopic results, we obtain parameters describing the system; we find the mass of the primary component is only 0.6Mʘ- undermassive for its spectral and luminosity class A5V, suggesting that a considerable amount of its original mass has been lost from the system during the course of evolution. The low-mass problem is very important for investigation of the evolution of close binary systems: largemass loss within and/or after the main-sequence will have a significant influence on the future evolution of binary systems.


2020 ◽  
Vol 497 (2) ◽  
pp. 1475-1487
Author(s):  
G Subebekova ◽  
S Zharikov ◽  
G Tovmassian ◽  
V Neustroev ◽  
M Wolf ◽  
...  

ABSTRACT We obtained photometric observations of the nova-like (NL) cataclysmic variable RW Tri and gathered all available AAVSO and other data from the literature. We determined the system parameters and found their uncertainties using the code developed by us to model the light curves of binary systems. New time-resolved optical spectroscopic observations of RW Tri were also obtained to study the properties of emission features produced by the system. The usual interpretation of the single-peaked emission lines in NL systems is related to the bi-conical wind from the accretion disc’s inner part. However, we found that the Hα emission profile is comprised of two components with different widths. We argue that the narrow component originates from the irradiated surface of the secondary, while the broader component’s source is an extended, low-velocity region in the outskirts of the accretion disc, located opposite to the collision point of the accretion stream and the disc. It appears to be a common feature for long-period NL systems – a point we discuss.


1981 ◽  
Vol 93 ◽  
pp. 155-175 ◽  
Author(s):  
E.P.J. van den Heuvel

The various ways in which compact objects (neutron stars and black holes) can be formed in interacting binary systems are qualitatively outlined on the basis of the three major modes of binary interaction identified by Webbink (1980). Massive interacting binary systems (M1 ≳ 10–12 M⊙) are, after the first phase of mass transfer expected to leave as remnants:(i) compact stars in massive binary systems (mass ≳ 10 M⊙) with a wide range of orbital periods, as remnants of quasi-conservative mass transfer; these systems later evolve into massive X-ray binaries.(ii) short-period compact star binaries (P ~ 1–2 days) in which the companion may be more massive or less massive than the compact object; these systems have high runaway velocities (≳ 100 km/sec) and start out with highly eccentric orbits, which are rapidly circularized by tidal forces; they may later evolve into low-mass X-ray binaries;(iii) single runaway compact objects with space velocities of ~ 102 to 4.102 km/sec; these are expected to be the most numerous compact remnants.Compact star binaries may also form from Cataclysmic binaries or wide binaries in which an O-Ne-Mg white dwarf is driven over the Chandrasekhar limit by accretion.


1988 ◽  
Vol 126 ◽  
pp. 669-670
Author(s):  
Stephen L. W. McMillan

Over the past decade, a very considerable amount of effort in stellar dynamics has gone into the study of interactions between binary systems and other stars. The asymptotic analytic results obtained by Heggie (1975) for binary-single star encounters have been largely confirmed and extended by later numerical experiments (Hills 1975, Hut and Bahcall 1983). Binary-binary interactions have been studied by Mikkola (1983).


Sign in / Sign up

Export Citation Format

Share Document