Bar effects on ionized gas properties and dust content in galaxy centers

2014 ◽  
Vol 10 (S309) ◽  
pp. 356-356
Author(s):  
A. Zurita ◽  
E. Florido ◽  
I. Pérez ◽  
P. Coelho ◽  
D. A. Gadotti

AbstractObservations and simulations indicate that bars are important agents to transfer material towards galaxy centers. However, observational studies devoted to investigate the effects of bars in galaxy centers are not yet conclusive. We have used a sample (Coelho & Gadotti 2011) of nearby face–on galaxies with available spectra (SDSS database) to investigate the footprints of bars in galaxy centers by analysing the central ionized gas properties of barred and unbarred galaxies separately. We find statistically significant differences in the Hβ Balmer extinction, star formation rate per unit area, in the [S ii]λ6717/[S ii]λ6731 line ratio, and notably in the N2 parameter (N2 = log([N ii]λ6583/Hα)). A deeper analysis reflects that these differences are only relevant for the less massive bulges (≲1010M⊙). These results have important consequences for studies on bulge formation and galaxy evolution.

Author(s):  
Angus Mok ◽  
Christine Wilson

AbstractWe studied molecular gas properties in a sample of 98 Hi - flux selected spiral galaxies within ~ 25 Mpc using the CO J = 3 − 2 line, observed with the JCMT, and subdivided into isolated, group, and Virgo subsamples. We find a larger mean H2 mass in the Virgo galaxies compared to group galaxies, despite their lower mean Hi mass. Combining our data with complementary Hα star formation rate measurements, Virgo galaxies have a longer molecular gas depletion times compared to group galaxies, perhaps due to heating processes in the cluster environment or differences in the turbulent pressure.


2019 ◽  
Vol 486 (2) ◽  
pp. 1509-1522 ◽  
Author(s):  
Mojtaba Raouf ◽  
Joseph Silk ◽  
Stanislav S Shabala ◽  
Gary A Mamon ◽  
Darren J Croton ◽  
...  

2019 ◽  
Vol 14 (S353) ◽  
pp. 262-263
Author(s):  
Shuai Feng ◽  
Shi-Yin Shen ◽  
Fang-Ting Yuan

AbstractThe interaction between galaxies is believed to be the main origin of the peculiarities of galaxies. It can disturb not only the morphology but also the kinematics of galaxies. These disturbed and asymmetric features are the indicators of galaxy interaction. We study the velocity field of ionized gas in galaxy pairs based on MaNGA survey. Using the kinemetry package, we fit the velocity field and quantify the degree of kinematic asymmetry. We find that the fraction of high kinematic asymmetry is much higher for galaxy pairs with dp⩽30h−1kpc. Moreover, compared to a control sample of single galaxies, we find that the star formation rate is enhanced in paired galaxies with high kinematic asymmetry. For paired galaxies with low kinematic asymmetry, no significant SFR enhancement has been found. The galaxy pairs with high kinematic asymmetry are more likely to be real interacting galaxies rather than projected pairs.


2013 ◽  
Vol 9 (S304) ◽  
pp. 302-306
Author(s):  
Chien-Ting J. Chen ◽  
Ryan C. Hickox

AbstractWe present the results of recent studies on the co-evolution of galaxies and the supermassive black holes (SMBHs) using Herschel far-infrared and Chandra X-ray observations in the Boötes survey region. For a sample of star-forming (SF) galaxies, we find a strong correlation between galactic star formation rate and the average SMBH accretion rate in SF galaxies. Recent studies have shown that star formation and AGN accretion are only weakly correlated for individual AGN, but this may be due to the short variability timescale of AGN relative to star formation. Averaging over the full AGN population yields a strong linear correlation between accretion and star formation, consistent with a simple picture in which the growth of SMBHs and their host galaxies are closely linked over galaxy evolution time scales.


2019 ◽  
Vol 486 (4) ◽  
pp. 5075-5093 ◽  
Author(s):  
Janaína C do Nascimento ◽  
Thaisa Storchi-Bergmann ◽  
Nícolas D Mallmann ◽  
Rogério Riffel ◽  
Gabriele S Ilha ◽  
...  

Abstract We present maps of the ionized gas flux distributions, excitation, star formation rate (SFR), surface mass density ΣH+, and obtain total values of SFR and ionized gas masses M for 62 active galactic nuclei (AGN) observed with SDSS-IV MaNGA and compare them with those of a control sample of 112 non-active galaxies. The most luminous AGN – with $L(\rm {[O\,{\small III}]}\lambda 5007) \ge 3.8\times 10^{40}\, \mbox{erg}\, \mbox{s}^{-1}$, and those hosted by earlier type galaxies are dominated by Seyfert excitation within 0.2 effective radius Re from the nucleus, surrounded by LINER excitation or transition regions, while the less luminous and hosted by later-type galaxies show equally frequent LINER and Seyfert excitation within $0.2\, R_\mathrm{ e}$. The extent R of the region ionized by the AGN follows the relation $R\propto \, L(\rm {[O\,{\small III}]})^{0.5}$ – as in the case of the broad-line region. The SFR distribution over the region ionized by hot stars is similar for AGN and controls, while the integrated SFR – in the range 10−3–10 M⊙ yr−1 is also similar for the late-type subsample, but higher in the AGN for 75 per cent of the early-type subsample. We thus conclude that there is no signature of AGN quenching star formation in the body of the galaxy in our sample. We also find that 66 per cent of the AGN have higher ionized gas masses M than the controls – in the range 105–3 × 107 M⊙ – while 75 per cent of the AGN have higher ΣH+ within $0.2\, R_\mathrm{ e}$ than the control galaxies.


2018 ◽  
Vol 620 ◽  
pp. A112 ◽  
Author(s):  
S. Bianchi ◽  
P. De Vis ◽  
S. Viaene ◽  
A. Nersesian ◽  
A. V. Mosenkov ◽  
...  

Aims. We aim to study the fraction of stellar radiation absorbed by dust, fabs, in 814 galaxies of different morphological types. The targets constitute the vast majority (93%) of the DustPedia sample, including almost all large (optical diameter larger than 1′), nearby (v ≤ 3000 km s−1) galaxies observed with the Herschel Space Observatory. Methods. For each object, we modelled the spectral energy distribution from the ultraviolet to the sub-millimetre using the dedicated, aperture-matched DustPedia photometry and the Code Investigating GALaxy Evolution (CIGALE). The value of fabs was obtained from the total luminosity emitted by dust and from the bolometric luminosity, which are estimated by the fit. Results. On average, 19% of the stellar radiation is absorbed by dust in DustPedia galaxies. The fraction rises to 25% if only late-type galaxies are considered. The dependence of fabs on morphology, showing a peak for Sb-Sc galaxies, is weak; it reflects a stronger, yet broad, positive correlation with the bolometric luminosity, which is identified for late-type, disk-dominated, high-specific-star-formation rate, gas-rich objects. We find no variation of fabs with inclination, at odds with radiative transfer models of edge-on galaxies. These results call for a self-consistent modelling of the evolution of the dust mass and geometry along the build-up of the stellar content. We also provide template spectral energy distributions in bins of morphology and luminosity and study the variation of fabs with stellar mass and specific star-formation rate. We confirm that the local Universe is missing the high fabs, luminous and actively star-forming objects necessary to explain the energy budget in observations of the extragalactic background light.


2020 ◽  
Vol 634 ◽  
pp. A97 ◽  
Author(s):  
Y. Khusanova ◽  
O. Le Fèvre ◽  
P. Cassata ◽  
O. Cucciati ◽  
B. C. Lemaux ◽  
...  

Context. The star formation rate density (SFRD) evolution presents an area of great interest in the studies of galaxy evolution and reionization. The current constraints of SFRD at z >  5 are based on the rest-frame UV luminosity functions with the data from photometric surveys. The VIMOS UltraDeep Survey (VUDS) was designed to observe galaxies at redshifts up to ∼6 and opened a window for measuring SFRD at z >  5 from a spectroscopic sample with a well-controlled selection function. Aims. We establish a robust statistical description of the star-forming galaxy population at the end of cosmic HI reionization (5.0 ≤ z ≤ 6.6) from a large sample of 49 galaxies with spectroscopically confirmed redshifts. We determine the rest-frame UV and Lyα luminosity functions and use them to calculate SFRD at the median redshift of our sample z = 5.6. Methods. We selected a sample of galaxies at 5.0 ≤ zspec ≤ 6.6 from the VUDS. We cleaned our sample from low redshift interlopers using ancillary photometric data. We identified galaxies with Lyα either in absorption or in emission, at variance with most spectroscopic samples in the literature where Lyα emitters (LAE) dominate. We determined luminosity functions using the 1/Vmax method. Results. The galaxies in this redshift range exhibit a large range in their properties. A fraction of our sample shows strong Lyα emission, while another fraction shows Lyα in absorption. UV-continuum slopes vary with luminosity, with a large dispersion. We find that star-forming galaxies at these redshifts are distributed along the main sequence in the stellar mass vs. SFR plane, described with a slope α = 0.85 ± 0.05. We report a flat evolution of the specific SFR compared to lower redshift measurements. We find that the UV luminosity function is best reproduced by a double power law, while a fit with a Schechter function is only marginally inferior. The Lyα luminosity function is best fitted with a Schechter function. We derive a logSFRDUV(M⊙ yr−1 Mpc−3) = −1.45+0.06−0.08 and logSFRDLyα(M⊙ yr−1 Mpc−3) = −1.40+0.07−0.08. The SFRD derived from the Lyα luminosity function is in excellent agreement with the UV-derived SFRD after correcting for IGM absorption. Conclusions. Our new SFRD measurements at a mean redshift of z = 5.6 are ∼0.2 dex above the mean SFRD reported in Madau & Dickinson (2014, ARA&A, 52, 415), but in excellent agreement with results from Bouwens et al. (2015a, ApJ, 803, 34). These measurements confirm the steep decline of the SFRD at z >  2. The bright end of the Lyα luminosity function has a high number density, indicating a significant star formation activity concentrated in the brightest LAE at these redshifts. LAE with equivalent width EW > 25 Å contribute to about 75% of the total UV-derived SFRD. While our analysis favors low dust content in 5.0 <  z <  6.6, uncertainties on the dust extinction correction and associated degeneracy in spectral fitting will remain an issue, when estimating the total SFRD until future surveys extending spectroscopy to the NIR rest-frame spectral domain, such as with JWST.


2020 ◽  
Vol 72 (4) ◽  
Author(s):  
Yuki Yamaguchi ◽  
Kotaro Kohno ◽  
Bunyo Hatsukade ◽  
Tao Wang ◽  
Yuki Yoshimura ◽  
...  

Abstract We make use of the ALMA twenty-Six Arcmin2 survey of GOODS-S At One-millimeter (ASAGAO), deep 1.2 mm continuum observations of a 26-arcmin2 region in the Great Observatories Origins Deep Survey-South (GOODS-S) obtained with Atacama Large Millimeter/sub-millimeter Array (ALMA), to probe dust-enshrouded star formation in K-band selected (i.e., stellar mass selected) galaxies, which are drawn from the FourStar Galaxy Evolution Survey (ZFOURGE) catalog. Based on the ASAGAO combined map, which was created by combining ASAGAO and ALMA archival data in the GOODS-South field, we find that 24 ZFOURGE sources have 1.2 mm counterparts with a signal-to-noise ratio &gt;4.5 (1σ ≃ 30–70 μJy beam−1 at 1.2 mm). Their median redshift is estimated to be $z$median = 2.38 ± 0.14. They generally follow the tight relationship of the stellar mass versus star formation rate (i.e., the main sequence of star-forming galaxies). ALMA-detected ZFOURGE sources exhibit systematically larger infrared (IR) excess (IRX ≡ LIR/LUV) compared to ZFOURGE galaxies without ALMA detections even though they have similar redshifts, stellar masses, and star formation rates. This implies the consensus stellar-mass versus IRX relation, which is known to be tight among rest-frame-ultraviolet-selected galaxies, cannot fully predict the ALMA detectability of stellar-mass-selected galaxies. We find that ALMA-detected ZFOURGE sources are the main contributors to the cosmic IR star formation rate density at $z$ = 2–3.


2019 ◽  
Vol 492 (1) ◽  
pp. 1492-1512
Author(s):  
S Gillman ◽  
A L Tiley ◽  
A M Swinbank ◽  
C M Harrison ◽  
Ian Smail ◽  
...  

ABSTRACT We present an analysis of the gas dynamics of star-forming galaxies at z ∼ 1.5 using data from the KMOS Galaxy Evolution Survey. We quantify the morphology of the galaxies using HSTcandels imaging parametrically and non-parametrically. We combine the H α dynamics from KMOS with the high-resolution imaging to derive the relation between stellar mass (M*) and stellar specific angular momentum (j*). We show that high-redshift star-forming galaxies at z ∼ 1.5 follow a power-law trend in specific stellar angular momentum with stellar mass similar to that of local late-type galaxies of the form j*  ∝  M$_*^{0.53\, \pm \, 0.10}$. The highest specific angular momentum galaxies are mostly disc-like, although generally both peculiar morphologies and disc-like systems are found across the sequence of specific angular momentum at a fixed stellar mass. We explore the scatter within the j* – M* plane and its correlation with both the integrated dynamical properties of a galaxy (e.g. velocity dispersion, Toomre Qg, H α star formation rate surface density ΣSFR) and its parametrized rest-frame UV / optical morphology (e.g. Sérsic index, bulge to total ratio, clumpiness, asymmetry, and concentration). We establish that the position in the j* – M* plane is strongly correlated with the star-formation surface density and the clumpiness of the stellar light distribution. Galaxies with peculiar rest-frame UV / optical morphologies have comparable specific angular momentum to disc- dominated galaxies of the same stellar mass, but are clumpier and have higher star formation rate surface densities. We propose that the peculiar morphologies in high-redshift systems are driven by higher star formation rate surface densities and higher gas fractions leading to a more clumpy interstellar medium.


2018 ◽  
Author(s):  
◽  
James Runge

We present a quantitative analysis of high-mass, low-z galaxies in order to investigate the 'downsizing' scenario of galaxy evolution. High-mass, low-z galaxies with ongoing star formation, antithetical to the 'downsizing' model, are identified using the 22�m data (W4 band) from the Wide-field Infrared Survey Explorer (WISE). A cluster and field sample is chosen to investigate any possible environmental effects. The cluster sample is based upon the GMBCG catalog, which contains 55,424 brightest cluster galaxies (BCGs) at 0.1 [less than or about] z [less than or about] 0.55 identified in the Sloan Digital Sky Survey (SDSS). We identify 389 W4-detected BCGs (W4BCGs) that have median SFRs of [about]50 M[symbol]/yr based upon their total IR luminosity (LIR), which is attributed to dust-enshrouded star formation. BCGs with such high SFRs are found in "cool-core" clusters and the star formation is thought to be fueled by a "cooling flow." Using Chandra X-ray data, it is shown that a subset of BCGs do reside within coolcores, but their mass deposition rates cannot account for the SFR. For comparison, a field sample is drawn from the Max-Planck Institute for Astrophysics - John Hopkins University (MPA-JHU) "value-added" SDSS DR7 catalog of spectrum measurements. A set of 1,244 high-mass, elliptical field galaxies within the same redshift range as the W4BCG catalog are identified for comparison. The median mass for the field sample is lower than the W4BCGs (Log(M/M[symbol])=10.9 and 11.2 respectively), as are their SFRs. However, the specific star formation rate (sSFR), the star formation rate per stellar mass, is comparable for both groups (Log(sSFR)[about]-9.7). This possibly reveals that there is no environmental dependence on the sSFR for these W4-detected galaxies. While a possible mechanism responsible for the SFR was identified for the W4BCGs, the process responsible for the star formation in the field sample requires further investigation.


Sign in / Sign up

Export Citation Format

Share Document