scholarly journals Dark matter inner slope and concentration in galaxies: from the Fornax dwarf to M87

2014 ◽  
Vol 10 (S311) ◽  
pp. 16-19 ◽  
Author(s):  
G. A. Mamon ◽  
J. Chevalier ◽  
A. J. Romanowsky ◽  
R. Wojtak

AbstractWe apply two new state-of-the-art methods that model the distribution of observed tracers in projected phase space to lift the mass / velocity anisotropy (VA) degeneracy and deduce constraints on the mass profiles of galaxies, as well as their VA. We first show how a distribution function based method applied to the satellite kinematics of otherwise isolated SDSS galaxies shows convincing observational evidence of age matching: red galaxies have more concentrated dark matter (DM) halos than blue galaxies of the same stellar or halo mass. Then, applying the MAMPOSSt technique to M87 (traced by its red and blue globular clusters) we find that very cuspy DM is favored, unless we release priors on DM concentration or stellar mass (leading to unconstrained slope). For the Fornax dwarf spheroidal (traced by its metal-rich and metal-poor stars), the inner DM slope is unconstrained, with weak evidence for a core if the stellar mass is fixed. This highlights how priors are crucial for DM modeling. Finally, we find that blue GCs around M87 and metal-rich stars in Fornax have tangential outer VA.

2020 ◽  
Vol 498 (3) ◽  
pp. 3158-3170
Author(s):  
Tianyi Yang ◽  
Michael J Hudson ◽  
Niayesh Afshordi

ABSTRACT The cold dark matter model predicts that dark matter haloes are connected by filaments. Direct measurements of the masses and structure of these filaments are difficult, but recently several studies have detected these dark-matter-dominated filaments using weak lensing. Here we study the efficiency of galaxy formation within the filaments by measuring their total mass-to-light ratios and stellar mass fractions. Specifically, we stack pairs of luminous red galaxies (LRGs) with a typical separation on the sky of 8 h−1 Mpc. We stack background galaxy shapes around pairs to obtain mass maps through weak lensing, and we stack galaxies from the Sloan Digital Sky Survey to obtain maps of light and stellar mass. To isolate the signal from the filament, we construct two matched catalogues of physical and non-physical (projected) LRG pairs, with the same distributions of redshift and separation. We then subtract the two stacked maps. Using LRG pair samples from the Baryon Oscillation Spectroscopic Survey at two different redshifts, we find that the evolution of the mass in filament is consistent with the predictions from perturbation theory. The filaments are not entirely dark: Their mass-to-light ratios (M/L = 351 ± 137 in solar units in the rband) and stellar mass fractions (Mstellar/M = 0.0073 ± 0.0030) are consistent with the cosmic values (and with their redshift evolutions).


2009 ◽  
Vol 5 (S262) ◽  
pp. 244-247
Author(s):  
Michael J. I. Brown ◽  

AbstractIn cold dark matter cosmologies, the most massive dark matter halos are predicted to undergo rapid growth at z < 1. While there is the expectation that massive galaxies will also rapidly grow via merging, recent observational studies conclude that the stellar masses of the most massive galaxies grow by just ~ 30% at z < 1. We have used the observed space density and clustering of z < 1 red galaxies in Boötes to determine how these galaxies populate dark matter halos. In the most massive dark matter halos, central galaxy stellar mass is proportional to halo mass to the power of a ~1/3 and much of the stellar mass resides within satellite galaxies. As a consequence, the most massive galaxies grow slowly even though they reside within rapidly growing dark matter halos.


2017 ◽  
Vol 601 ◽  
pp. A63 ◽  
Author(s):  
Tao Wang ◽  
D. Elbaz ◽  
D. M. Alexander ◽  
Y. Q. Xue ◽  
J. M. Gabor ◽  
...  

We explore the dependence of the incidence of moderate-luminosity (L0.5−8 keV = 1041.9−43.7 erg s-1) active galactic nuclei (AGNs) and the distribution of their accretion rates on host color at 0.5 <z < 2.5. Based on the deepest X-ray and UV-to-far-infrared data in the two The Great Observatories Origins Deep Survey (GOODS) fields, we identify 221 AGNs within a mass-complete parent galaxy sample down to M∗ > 1010 M⊙. We use extinction-corrected rest-frame U−V colors to divide both AGN hosts and non-AGN galaxies into red sequence (red), green valley (green), and blue cloud (blue) populations. We find that the fraction of galaxies hosting an AGN at fixed X-ray luminosity increases with stellar mass and redshift for all the three galaxy populations, independent of their colors. However, both the AGN fraction at fixed stellar mass and its evolution with redshift are clearly dependent on host colors. Most notably, red galaxies have the lowest AGN fraction (~5%) at z ~ 1 yet with most rapid evolution with redshift, increasing by a factor of ~5 (24%) at z ~ 2. Green galaxies exhibit the highest AGN fraction across all redshifts, which is most pronounced at z ~ 2 with more than half of them hosting an AGN at M∗ > 1010.6 M⊙. Together with the high AGN fraction in red galaxies at z ~ 2, this indicates that (X-ray) AGNs could be important in both transforming (quenching) star-forming galaxies into quiescent ones and subsequently maintaining their quiescence at high redshift. Furthermore, consistent with previous studies at lower redshifts, we show that the probability of hosting an AGN for the total galaxy population can be characterized by a universal Eddington ratio (as approximated by LX/M∗) distribution (p(λEdd) ~ λEdd-0.4), which is independent on host mass. Yet consistent with their different AGN fractions, galaxies with different colors appear to also have different p(λEdd) with red galaxies exhibiting more rapid redshift evolution compared with that for green and blue galaxies. Evidence for a steeper power-law distribution of p(λEdd) in red galaxies (p(λEdd) ~ λEdd-0.6) is also presented, though larger samples are needed to confirm. These results suggest that the AGN accretion or the growth of supermassive black holes is related to their host properties, and may also influence their hosts in a different mode dependent on the host color.


2019 ◽  
Vol 489 (2) ◽  
pp. 2634-2651 ◽  
Author(s):  
Moritz Haslbauer ◽  
Indranil Banik ◽  
Pavel Kroupa ◽  
Konstantin Grishunin

ABSTRACT Recently van Dokkum et al. reported that the galaxy NGC 1052-DF2 (DF2) lacks dark matter if located at 20 Mpc from Earth. In contrast, DF2 is a dark-matter-dominated dwarf galaxy with a normal globular cluster population if it has a much shorter distance near 10 Mpc. However, DF2 then has a high peculiar velocity wrt. the cosmic microwave background of 886 $\rm {km\, s^{-1}}$, which differs from that of the Local Group (LG) velocity vector by 1298 $\rm {km\, s^{-1}}$ with an angle of $117 \, ^{\circ }$. Taking into account the dynamical M/L ratio, the stellar mass, half-light radius, peculiar velocity, motion relative to the LG, and the luminosities of the globular clusters, we show that the probability of finding DF2-like galaxies in the lambda cold dark matter (ΛCDM) TNG100-1 simulation is at most 1.0 × 10−4 at 11.5 Mpc and is 4.8 × 10−7 at 20.0 Mpc. At 11.5 Mpc, the peculiar velocity is in significant tension in the TNG100-1, TNG300-1, and Millennium simulations, but naturally in a Milgromian cosmology. At 20.0 Mpc, the unusual globular cluster population would challenge any cosmological model. Estimating that precise measurements of the internal velocity dispersion, stellar mass, and distance exist for 100 galaxies, DF2 is in 2.6σ (11.5 Mpc) and 4.1σ (20.0 Mpc) tension with standard cosmology. Adopting the former distance for DF2 and assuming that NGC 1052-DF4 is at 20.0 Mpc, the existence of both is in tension at ≥4.8σ with the ΛCDM model. If both galaxies are at 20.0 Mpc the ΛCDM cosmology has to be rejected by ≥5.8σ.


Open Physics ◽  
2015 ◽  
Vol 13 (1) ◽  
Author(s):  
Xin-Fa Deng ◽  
Jun Song ◽  
Yi-Qing Chen ◽  
Peng Jiang ◽  
Ying-Ping Ding

AbstractUsing two volume-limited Main galaxy samples of the Sloan Digital Sky Survey Data Release 10 (SDSS DR10), we examine the environmental dependence of galaxy age at fixed parameters or for different galaxy families. Statistical results show that the environmental dependence of galaxy age is stronger for late type galaxies, but can be still observed for the early types: the age of galaxies in the densest regime is preferentially older than that in the lowest density regime with the same morphological type. We also find that the environmental dependence of galaxy age for red galaxies and Low Stellar Mass (LSM) galaxies is stronger, while the one for blue galaxies and High Stellar Mass ( HSM ) galaxies is very weak.


2020 ◽  
Vol 498 (1) ◽  
pp. 1101-1120
Author(s):  
Carlo Cannarozzo ◽  
Alessandro Sonnenfeld ◽  
Carlo Nipoti

ABSTRACT We study the evolution of the observed correlation between central stellar velocity dispersion σe and stellar mass M* of massive ($M_*\gtrsim 3\times 10^{10}\, \mathrm{M_\odot}$) early-type galaxies (ETGs) out to redshift z ≈ 2.5, taking advantage of a Bayesian hierarchical inference formalism. Collecting ETGs from state-of-the-art literature samples, we build a fiducial sample (0 ≲ z ≲ 1), which is obtained with homogeneous selection criteria, but also a less homogeneous extended sample (0 ≲ z ≲ 2.5). Based on the fiducial sample, we find that at z ≲ 1 the M*–σe relation is well represented by $\sigma _{\mathrm{e}}\propto M_*^{\beta }(1+z)^{\zeta}$, with β ≃ 0.18 independent of redshift and ζ ≃ 0.4 (at a given M*, σe decreases for decreasing z, for instance by a factor of ≈1.3 from z = 1 to z = 0). When the slope β is allowed to evolve, we find it increasing with redshift: β(z) ≃ 0.16 + 0.26log (1 + z) describes the data as well as constant β ≃ 0.18. The intrinsic scatter of the M*–σe relation is ≃0.08 dex in σe at given M*, independent of redshift. Our results suggest that, on average, the velocity dispersion of individual massive (M* ≳ 3 × 1011M⊙) ETGs decreases with time while they evolve from z ≈ 1 to z ≈ 0. The analysis of the extended sample, over the wider redshift range 0 ≲ z ≲ 2.5, leads to results similar to that of the fiducial sample, with slightly stronger redshift dependence of the normalization (ζ ≃ 0.5) and weaker redshift dependence of the slope (dβ/dlog (1 + z) ≃ 0.18) when β varies with time. At z = 2 ETGs with $M_*\approx 10^{11}\, \mathrm{M_\odot}$ have, on average, ≈1.7 higher σe than ETGs of similar stellar mass at z = 0.


2009 ◽  
Vol 5 (H15) ◽  
pp. 87-87
Author(s):  
Michael J. I. Brown ◽  

AbstractTo understand the slow growth of massive galaxies at z < 1, we have modeled how these galaxies populate dark matter halos. The models are constrained with the observed luminosity function and clustering of z < 1 red galaxies. In the most massive halos, much of the stellar mass resides within multiple satellite galaxies rather than a single central galaxy. Consequently, massive galaxies grow slowly within rapidly growing dark matter halos.


2021 ◽  
Vol 653 ◽  
pp. A82
Author(s):  
M. Bilicki ◽  
A. Dvornik ◽  
H. Hoekstra ◽  
A. H. Wright ◽  
N. E. Chisari ◽  
...  

We present a bright galaxy sample with accurate and precise photometric redshifts (photo-zs), selected using ugriZYJHKs photometry from the Kilo-Degree Survey (KiDS) Data Release 4. The highly pure and complete dataset is flux-limited at r < 20 mag, covers ∼1000 deg2, and contains about 1 million galaxies after artifact masking. We exploit the overlap with Galaxy And Mass Assembly spectroscopy as calibration to determine photo-zs with the supervised machine learning neural network algorithm implemented in the ANNz2 software. The photo-zs have a mean error of |⟨δz⟩|∼5 × 10−4 and low scatter (scaled mean absolute deviation of ∼0.018(1 + z)); they are both practically independent of the r-band magnitude and photo-z at 0.05 < zphot < 0.5. Combined with the 9-band photometry, these allow us to estimate robust absolute magnitudes and stellar masses for the full sample. As a demonstration of the usefulness of these data, we split the dataset into red and blue galaxies, used them as lenses, and measured the weak gravitational lensing signal around them for five stellar mass bins. We fit a halo model to these high-precision measurements to constrain the stellar-mass–halo-mass relations for blue and red galaxies. We find that for high stellar mass (M⋆ > 5 × 1011 M⊙), the red galaxies occupy dark matter halos that are much more massive than those occupied by blue galaxies with the same stellar mass.


2022 ◽  
Vol 924 (2) ◽  
pp. 77
Author(s):  
Raymond G. Carlberg ◽  
Laura C. Keating

Abstract A cosmological zoom-in simulation that develops into a Milky Way-like halo begins at redshift 7. The initial dark matter distribution is seeded with dense star clusters of median mass 5 × 105 M ⊙, placed in the largest subhalos present, which have a median peak circular velocity of 25 km s−1. Three simulations are initialized using the same dark matter distribution with the star clusters starting on approximately circular orbits having initial median radii 6.8, 0.14 kpc, and, at the exact center of the subhalos. The simulations are evolved to the current epoch at which time the median galactic orbital radii of the three sets of clusters are 30, 5, and 16 kpc, with the clusters losing about 2%, 50%, and 15% of their mass, respectively. Clusters beginning at small orbital radii have so much tidal forcing that they are often not in equilibrium. Clusters that start at larger subhalo radii have a velocity dispersion that declines smoothly to ≃20% of the central value at ≃20 half-mass radii. The clusters that begin in the subhalo centers can show a rise in velocity dispersion beyond 3–5 half-mass radii. That is, the clusters that form without local dark matter always have stellar-mass-dominated kinematics at all radii, whereas about 25% of the clusters that begin in subhalo centers have remnant local dark matter.


2015 ◽  
Vol 12 (S316) ◽  
pp. 336-337
Author(s):  
Joowon Lee ◽  
Jihye Shin ◽  
Sungsoo S. Kim

AbstractGlobular clusters (GCs) are known to have a very small amount of or no dark matter (DM). Even if GCs are formed in individual DM halos, they must have lost the majority of the DM through dynamical processes such as mass segregation or tidal stripping. Using Fokker-Planck (FP) calculations, we investigate the dynamical evolution of three Galactic GCs with an assumption that they were formed in mini DM halos. We trace the amount of DM of 47 Tuc, NGC 1851, and M 15, which are a ‘disk/bulge’ cluster, an ‘old halo’ cluster, and a ‘young halo’ cluster, respectively. We find that these three GCs must have initially had insignificant amounts of DM, less than 10 percent of the initial stellar mass of each cluster.


Sign in / Sign up

Export Citation Format

Share Document