scholarly journals The Stellar Mass of M31 as inferred by the Andromeda Optical & Infrared Disk Survey

2014 ◽  
Vol 10 (S311) ◽  
pp. 82-85 ◽  
Author(s):  
Jonathan Sick ◽  
Stephane Courteau ◽  
Jean-Charles Cuillandre ◽  
Julianne Dalcanton ◽  
Roelof de Jong ◽  
...  

AbstractOur proximity and external vantage point make M31 an ideal testbed for understanding the structure of spiral galaxies. The Andromeda Optical and Infrared Disk Survey (ANDROIDS) has mapped M31's bulge and disk out to R=40 kpc in ugriJKs bands with CFHT using a careful sky calibration. We use Bayesian modelling of the optical-infrared spectral energy distribution (SED) to estimate profiles of M31's stellar populations and mass along the major axis. This analysis provides evidence for inside-out disk formation and a declining metallicity gradient. M31's i-band mass-to-light ratio (M/Li*) decreases from 0.5 dex in the bulge to ~ 0.2 dex at 40 kpc. The best-constrained stellar population models use the full ugriJKs SED but are also consistent with optical-only fits. Therefore, while NIR data can be successfully modelled with modern stellar population synthesis, NIR data do not provide additional constraints in this application. Fits to the gi-SED alone yield M/Li* that are systematically lower than the full SED fit by 0.1 dex. This is still smaller than the 0.3 dex scatter amongst different relations for M/Li via g – i colour found in the literature. We advocate a stellar mass of M*(30 kpc) = 10.3+2.3-1.7 × 1010 M⊙ for the M31 bulge and disk.

2019 ◽  
Vol 624 ◽  
pp. A102 ◽  
Author(s):  
Wouter Dobbels ◽  
Serge Krier ◽  
Stephan Pirson ◽  
Sébastien Viaene ◽  
Gert De Geyter ◽  
...  

Context. One of the most important properties of a galaxy is the total stellar mass, or equivalently the stellar mass-to-light ratio (M/L). It is not directly observable, but can be estimated from stellar population synthesis. Currently, a galaxy’s M/L is typically estimated from global fluxes. For example, a single global g − i colour correlates well with the stellar M/L. Spectral energy distribution (SED) fitting can make use of all available fluxes and their errors to make a Bayesian estimate of the M/L. Aims. We want to investigate the possibility of using morphology information to assist predictions of M/L. Our first goal is to develop and train a method that only requires a g-band image and redshift as input. This will allows us to study the correlation between M/L and morphology. Next, we can also include the i-band flux, and determine if morphology provides additional constraints compared to a method that only uses g- and i-band fluxes. Methods. We used a machine learning pipeline that can be split in two steps. First, we detected morphology features with a convolutional neural network. These are then combined with redshift, pixel size and g-band luminosity features in a gradient boosting machine. Our training target was the M/L acquired from the GALEX-SDSS-WISE Legacy Catalog, which uses global SED fitting and contains galaxies with z ∼ 0.1. Results. Morphology is a useful attribute when no colour information is available, but can not outperform colour methods on its own. When we combine the morphology features with global g- and i-band luminosities, we find an improved estimate compared to a model which does not make use of morphology. Conclusions. While our method was trained to reproduce global SED fitted M/L, galaxy morphology gives us an important additional constraint when using one or two bands. Our framework can be extended to other problems to make use of morphological information.


1995 ◽  
Vol 164 ◽  
pp. 448-449
Author(s):  
Young-Wook Lee ◽  
Jang-Hyun Park

Recent UV observations of elliptical galaxies are interpreted as evidence for the global second parameter phenomenon of horizontal-branch (HB) morphology within, as well as between, these galaxies. In this picture, the origin of the UV radiation is mostly due to hot HB stars and their post-HB progeny produced by the metal-poor tail of the wide metallicity distribution expected to be present in these systems. The attractive feature of this model is that the bimodal temperature distributions of HB stars (and their progeny), required to generate the 2000 Å dip of the spectral energy distribution (SED), can naturally be reproduced from the standard HB population models with large range of metal abundance (see Lee 1994, ApJ, 430, L113). Detailed population synthesis models are presented, which reproduce the systematic variation of UV upturn among elliptical galaxies (Fig 1). If age is the major second parameter, as suggested by the fossil record in our Galaxy, the observed UV color gradient and the UV upturn-total mass (mean metallicity) correlation, within and between the early-type systems, would imply, respectively, (1) that most galaxies formed from the inside out, and (2) that there is age spread among galaxies, in the sense that more massive galaxies are older (and more metal-rich in the mean) than less massive galaxies as a result of more efficient star formation (and metal enrichment) in denser environments.


2019 ◽  
Vol 631 ◽  
pp. A156 ◽  
Author(s):  
L. A. Díaz-García ◽  
A. J. Cenarro ◽  
C. López-Sanjuan ◽  
I. Ferreras ◽  
M. Cerviño ◽  
...  

Aims. Our aim is to determine the distribution of stellar population parameters (extinction, age, metallicity, and star formation rates) of quiescent galaxies within the rest-frame stellar mass–colour diagrams and UVJ colour–colour diagrams corrected for extinction up to z ∼ 1. These novel diagrams reduce the contamination in samples of quiescent galaxies owing to dust-reddened galaxies, and they provide useful constraints on stellar population parameters only using rest-frame colours and/or stellar mass. Methods. We set constraints on the stellar population parameters of quiescent galaxies combining the ALHAMBRA multi-filter photo-spectra with our fitting code for spectral energy distribution, MUlti-Filter FITting (MUFFIT), making use of composite stellar population models based on two independent sets of simple stellar population (SSP) models. The extinction obtained by MUFFIT allowed us to remove dusty star-forming (DSF) galaxies from the sample of red UVJ galaxies. The distributions of stellar population parameters across these rest-frame diagrams are revealed after the dust correction and are fitted by LOESS, a bi-dimensional and locally weighted regression method, to reduce uncertainty effects. Results. Quiescent galaxy samples defined via classical UVJ diagrams are typically contaminated by a ∼20% fraction of DSF galaxies. A significant part of the galaxies in the green valley are actually obscured star-forming galaxies (∼30–65%). Consequently, the transition of galaxies from the blue cloud to the red sequence, and hence the related mechanisms for quenching, seems to be much more efficient and faster than previously reported. The rest-frame stellar mass–colour and UVJ colour–colour diagrams are useful for constraining the age, metallicity, extinction, and star formation rate of quiescent galaxies by only their redshift, rest-frame colours, and/or stellar mass. Dust correction plays an important role in understanding how quiescent galaxies are distributed in these diagrams and is key to performing a pure selection of quiescent galaxies via intrinsic colours.


2018 ◽  
Vol 615 ◽  
pp. A55 ◽  
Author(s):  
Eduardo Telles ◽  
Jorge Melnick

Aims. We present a UV to mid-IR spectral energy distribution (SED) study of a large sample of SDSS DR13 HII galaxies. These galaxies are selected as starbursts (EW(Hα) > 50Å) and for their high-excitation locus in the upper left region of the BPT diagram. Their photometry was derived from the cross-matched GALEX, SDSS, UKDISS, and WISE catalogs. Methods. We used CIGALE modeling and a SED fitting routine with the parametrization of a three-burst star formation history, and a comprehensive analysis of all other model parameters. We were able to estimate the contribution of the underlying old stellar population to the observed equivalent width of Hβ, and allow for more accurate burst age determination. Results. We found that the star formation histories of HII Galaxies can be reproduced remarkably well by three major eras of star formation. In addition, the SED fitting results indicate that in all cases the current burst produces a small percent of the total stellar mass, i.e., the bulk of stellar mass in HII galaxies has been produced by the past episodes of star formation, and also indicate that at a given age the Hβ luminosity depends only on the mass of young stars favoring a universal IMF for massive stars. Most importantly, the current star formation episodes are maximum starbursts that produce stars at the highest possible rate.


2019 ◽  
Vol 15 (S341) ◽  
pp. 55-59
Author(s):  
Abdurro’uf ◽  
Masayuki Akiyama

AbstractDespite decreasing cosmic star formation rate density over the last 10 Gyr, the stellar mass (M*) buildups in galaxies were still progressing during this epoch. About 50% of the current M* density in the universe was built over the last ∼8.7 Gyr. In this research, we investigated the stellar mass buildup and quenching of spatially resolved regions within massive disk galaxies over the last 10 Gyr. We apply the spectral energy distribution (SED) fitting method to SEDs of sub-galactic regions in galaxies to derive the spatially resolved distributions of SFR and M* in the galaxies. This namely pixel-to-pixel SED fitting method is applied to massive disk galaxies at 0.01 < z < 0.02 and 0.8 < z < 1.8. We found that massive disk galaxies tend to build their M* and quench their star formation progressively from the central region to the outskirts, i.e. inside-out stellar mass buildup and quenching.


2009 ◽  
Vol 5 (S266) ◽  
pp. 333-338 ◽  
Author(s):  
Xuefei Chen ◽  
Zhanwen Han

AbstractBlue stragglers have been found in all populations. They are important in both stellar evolution and stellar population synthesis. Much evidence shows that blue stragglers are relevant to primordial binaries. Here, we summarize the links between binary evolution and blue stragglers, describe the characteristics of blue stragglers originating from different binary evolutionary channels and show their consequences for binary population synthesis, such as for the integrated spectral-energy distribution, the colour–magnitude diagram, their specific frequency, and their influence on colours, etc.


2019 ◽  
Vol 631 ◽  
pp. A157 ◽  
Author(s):  
L. A. Díaz-García ◽  
A. J. Cenarro ◽  
C. López-Sanjuan ◽  
I. Ferreras ◽  
A. Fernández-Soto ◽  
...  

Aims. We aim at constraining the stellar population properties of quiescent galaxies. These properties reveal how these galaxies evolved and assembled since z ∼ 1 up to the present time. Methods. Combining the ALHAMBRA multi-filter photo-spectra with the fitting code for spectral energy distribution MUFFIT (MUlti-Filter FITting), we built a complete catalogue of quiescent galaxies via the dust-corrected stellar mass vs. colour diagram. This catalogue includes stellar population properties, such as age, metallicity, extinction, stellar mass, and photometric redshift, retrieved from the analysis of composited populations based on two independent sets of simple stellar population (SSP) models. We developed and applied a novel methodology to provide, for the first time, the analytic probability distribution functions (PDFs) of mass-weighted age, metallicity, and extinction of quiescent galaxies as a function of redshift and stellar mass. We adopted different star formation histories to discard potential systematics in the analysis. Results. The number density of quiescent galaxies is found to increase since z ∼ 1, with a more substantial variation at lower stellar mass. Quiescent galaxies feature extinction AV <  0.6, with median values in the range AV = 0.15–0.3. At increasing stellar mass, quiescent galaxies are older and more metal rich since z ∼ 1. A detailed analysis of the PDFs reveals that the evolution of quiescent galaxies is not compatible with passive evolution and a slight decrease of 0.1–0.2 dex is hinted at median metallicity. The intrinsic dispersion of the age and metallicity PDFs show a dependence on stellar mass and/or redshift. These results are consistent with both sets of SSP models and assumptions of alternative star formation histories explored. Consequently, the quiescent population must undergo an evolutive pathway including mergers and/or remnants of star formation to reconcile the observed trends, where the “progenitor” bias should also be taken into account.


2020 ◽  
Vol 497 (4) ◽  
pp. 4262-4275
Author(s):  
Thomas M Jackson ◽  
A Pasquali ◽  
C Pacifici ◽  
C Engler ◽  
A Pillepich ◽  
...  

ABSTRACT The stellar mass assembly of galaxies can be affected by both secular and environmental processes. In this study, for the first time, we investigate the stellar mass assembly of $\sim 90\, 000$ low-redshift, central galaxies selected from SDSS group catalogues ($M_{\rm Stellar}\gtrsim 10^{9.5}\, \mathrm{M}_{\odot }$, $M_{\rm Halo}\gtrsim 10^{12}\, \mathrm{M}_{\odot }$) as a function of both stellar mass and halo mass. We use estimates of the times at which 10, 50, and 90 per cent of the stellar mass were assembled from photometric spectral energy distribution fitting, allowing a more complete investigation than single stellar ages alone. We consider trends in both stellar mass and halo mass simultaneously, finding dependences of all assembly times on both. We find that galaxies with higher stellar masses (at constant halo mass) have on average older lookback times, similar to previous studies of galaxy assembly. We also find that galaxies at higher halo mass (at constant stellar mass) have younger lookback times, possibly due to a larger reservoir of gas for star formation. An exception to this is a subsample with high stellar-to-halo mass ratios, which are likely massive, field spirals. We compare these observed trends to those predicted by the TNG300 simulation, finding good agreement overall as a function of either stellar mass or halo mass. However, some differences in the assembly times (of up to ∼3 Gyr) appear when considering both stellar mass and halo mass simultaneously, noticeably at intermediate stellar masses (MStellar ∼ 1011 M⊙). These discrepancies are possibly linked to the quenched fraction of galaxies and the kinetic mode active galactic nucleus feedback implemented in TNG300.


2021 ◽  
Vol 923 (1) ◽  
pp. 5
Author(s):  
Yuma Sugahara ◽  
Akio K. Inoue ◽  
Takuya Hashimoto ◽  
Satoshi Yamanaka ◽  
Seiji Fujimoto ◽  
...  

Abstract We present new Atacama Large Millimeter/submillimeter Array Band 7 observational results of a Lyman-break galaxy at z = 7.15, B14-65666 (“Big Three Dragons”), which is an object detected in [O iii] 88 μm, [C ii] 158 μm, and dust continuum emission during the epoch of reionization. Our targets are the [N ii] 122 μm fine-structure emission line and the underlying 120 μm dust continuum. The dust continuum is detected with a ∼19σ significance. From far-infrared spectral energy distribution sampled at 90, 120, and 160 μm, we obtain a best-fit dust temperature of 40 K (79 K) and an infrared luminosity of log 10 ( L IR / L ⊙ ) = 11.6 (12.1) at the emissivity index β = 2.0 (1.0). The [N ii] 122 μm line is not detected. The 3σ upper limit of the [N ii] luminosity is 8.1 × 107 L ⊙. From the [N ii], [O iii], and [C ii] line luminosities, we use the Cloudy photoionization code to estimate nebular parameters as functions of metallicity. If the metallicity of the galaxy is high (Z > 0.4 Z ⊙), the ionization parameter and hydrogen density are log 10 U ≃ − 2.7 ± 0.1 and n H ≃ 50–250 cm−3, respectively, which are comparable to those measured in low-redshift galaxies. The nitrogen-to-oxygen abundance ratio, N/O, is constrained to be subsolar. At Z < 0.4 Z ⊙, the allowed U drastically increases as the assumed metallicity decreases. For high ionization parameters, the N/O constraint becomes weak. Finally, our Cloudy models predict the location of B14-65666 on the BPT diagram, thereby allowing a comparison with low-redshift galaxies.


Sign in / Sign up

Export Citation Format

Share Document