scholarly journals Resonant motions of supermassive black hole triples

2014 ◽  
Vol 10 (S312) ◽  
pp. 101-104
Author(s):  
Wei Hao ◽  
Rainer Spurzem ◽  
Thorsten Naab ◽  
Long Wang ◽  
M. B. N. Kouwenhoven ◽  
...  

AbstractTriple supermassive black holes (SMBH) can form during the hierarchical mergers of massive galaxies with an existing binary. Perturbations by a third black hole may accelerate the merging process of an inner binary, for example through the Kozai mechanism. We analyze the evolution of simulated hierarchical triple SMBHs in galactic centers, and find resonances in the evolution of the semi-major axis, the eccentricity and the inclination, for both the inner and the outer orbits of the triple system, which are not only Kozai like. Through resonant oscillations, SMBH can trigger a significant increase of the inner SMBH binary eccentricity shortening the merger timescale expected from gravitational wave (GW) emission. As hierarchical triple SMBHs may be frequent in massive galaxies, the influence of orbital resonances is of great importance to our understanding of black hole coalescence and gravitational wave detection. Although Kozai mechanism is believed to play an important role in this process, detailed studies on the pattern of these resonances is necessary.

2020 ◽  
Vol 498 (2) ◽  
pp. 1905-1910 ◽  
Author(s):  
Gregory Ashton ◽  
Eric Thrane

ABSTRACT The gravitational-wave candidate GW151216 is a proposed binary black hole event from the first observing run of the Advanced LIGO detectors. Not identified as a bona fide signal by the LIGO–Virgo collaboration, there is disagreement as to its authenticity, which is quantified by pastro, the probability that the event is astrophysical in origin. Previous estimates of pastro from different groups range from 0.18 to 0.71, making it unclear whether this event should be included in population analyses, which typically require pastro > 0.5. Whether GW151216 is an astrophysical signal or not has implications for the population properties of stellar-mass black holes and hence the evolution of massive stars. Using the astrophysical odds, a Bayesian method that uses the signal coherence between detectors and a parametrized model of non-astrophysical detector noise, we find that pastro = 0.03, suggesting that GW151216 is unlikely to be a genuine signal. We also analyse GW150914 (the first gravitational-wave detection) and GW151012 (initially considered to be an ambiguous detection) and find pastro values of 1 and 0.997, respectively. We argue that the astrophysical odds presented here improve upon traditional methods for distinguishing signals from noise.


2009 ◽  
Vol 5 (S267) ◽  
pp. 270-270
Author(s):  
Z. L. Wen ◽  
J. L. Han ◽  
F. S. Liu

Galaxy mergers play an important role in many astrophysical processes, such as growth of massive galaxies, triggering AGN, formation of supermassive black hole (SMBH) binaries, and gravitational wave (GW) radiation. Merger rate is one of key quantities for these studies. Previous studies show that the pair fraction varies in a range of 1%–10% in the redshift range of z = 0.2–1.2. These merger rates are usually calculated from projected close pairs, and very few previous authors have carefully checked the merging fraction of a large sample of pairs.


2020 ◽  
Vol 495 (1) ◽  
pp. 536-543 ◽  
Author(s):  
Razieh Emami ◽  
Abraham Loeb

ABSTRACT We analyse triple systems composed of the supermassive black hole (SMBH) near the centre of M87 and a pair of black holes (BHs) with masses in the range of $10{-}10^3\, {\rm M}_{\odot }$. We consider the post Newtonian precession as well as the Kozai–Lidov interactions at the quadruple and octupole levels in modelling the evolution of binary black hole (BBH) under the influence of the SMBH. Kozai–Lidov oscillations enhance the gravitational wave (GW) signal in some portions of the parameter space. We identify frequency peaks and examine the detectability of GWs with LISA as well as future observatories such as μAres and DECIGO. We show examples in which GW signal can be observed with a few or all of these detectors. Multiwavelength GW spectroscopy holds the potential to discover stellar to intermediate mass BHs near the centre of M87. We estimate the rate, Γ, of collisions between the BBHs and fly-by stars at the centre of M87. Our calculation suggest $\Gamma \lt 10\, \rm {Gyr}^{-1}$ for a wide range of the mass and semimajor axes of the inner binary.


2012 ◽  
Vol 8 (S295) ◽  
pp. 257-260
Author(s):  
Christine Jones ◽  
William Forman ◽  
Akos Bogdan ◽  
Scott Randall ◽  
Ralph Kraft ◽  
...  

AbstractMassive galaxies harbor a supermassive black hole at their centers. At high redshifts, these galaxies experienced a very active quasar phase, when, as their black holes grew by accretion, they produced enormous amounts of energy. At the present epoch, these black holes still undergo occasional outbursts, although the mode of their energy release is primarily mechanical rather than radiative. The energy from these outbursts can reheat the cooling gas in the galaxy cores and maintain the red and dead nature of the early-type galaxies. These outbursts also can have dramatic effects on the galaxy-scale hot coronae found in the more massive galaxies. We describe research in three areas related to the hot gas around galaxies and their supermassive black holes. First we present examples of galaxies with AGN outbursts that have been studied in detail. Second, we show that X-ray emitting low-luminosity AGN are present in 80% of the galaxies studied. Third, we discuss the first examples of extensive hot gas and dark matter halos in optically faint galaxies.


2021 ◽  
Vol 503 (3) ◽  
pp. 3629-3642
Author(s):  
Colin DeGraf ◽  
Debora Sijacki ◽  
Tiziana Di Matteo ◽  
Kelly Holley-Bockelmann ◽  
Greg Snyder ◽  
...  

ABSTRACT With projects such as Laser Interferometer Space Antenna (LISA) and Pulsar Timing Arrays (PTAs) expected to detect gravitational waves from supermassive black hole mergers in the near future, it is key that we understand what we expect those detections to be, and maximize what we can learn from them. To address this, we study the mergers of supermassive black holes in the Illustris simulation, the overall rate of mergers, and the correlation between merging black holes and their host galaxies. We find these mergers occur in typical galaxies along the MBH−M* relation, and that between LISA and PTAs we expect to probe the full range of galaxy masses. As galaxy mergers can trigger star formation, we find that galaxies hosting low-mass black hole mergers tend to show a slight increase in star formation rates compared to a mass-matched sample. However, high-mass merger hosts have typical star formation rates, due to a combination of low gas fractions and powerful active galactic nucleus feedback. Although minor black hole mergers do not correlate with disturbed morphologies, major mergers (especially at high-masses) tend to show morphological evidence of recent galaxy mergers which survive for ∼500 Myr. This is on the same scale as the infall/hardening time of merging black holes, suggesting that electromagnetic follow-ups to gravitational wave signals may not be able to observe this correlation. We further find that incorporating a realistic time-scale delay for the black hole mergers could shift the merger distribution towards higher masses, decreasing the rate of LISA detections while increasing the rate of PTA detections.


2019 ◽  
Vol 14 (S351) ◽  
pp. 80-83 ◽  
Author(s):  
Melvyn B. Davies ◽  
Abbas Askar ◽  
Ross P. Church

AbstractSupermassive black holes are found in most galactic nuclei. A large fraction of these nuclei also contain a nuclear stellar cluster surrounding the black hole. Here we consider the idea that the nuclear stellar cluster formed first and that the supermassive black hole grew later. In particular we consider the merger of three stellar clusters to form a nuclear stellar cluster, where some of these clusters contain a single intermediate-mass black hole (IMBH). In the cases where multiple clusters contain IMBHs, we discuss whether the black holes are likely to merge and whether such mergers are likely to result in the ejection of the merged black hole from the nuclear stellar cluster. In some cases, no supermassive black hole will form as any merger product is not retained. This is a natural pathway to explain those galactic nuclei that contain a nuclear stellar cluster but apparently lack a supermassive black hole; M33 being a nearby example. Alternatively, if an IMBH merger product is retained within the nuclear stellar cluster, it may subsequently grow, e.g. via the tidal disruption of stars, to form a supermassive black hole.


2021 ◽  
Vol 30 (6) ◽  
pp. 20-29
Author(s):  
Young-Min KIM ◽  
Miok PARK ◽  
Yeong-Bok BAE ◽  
Sungwook E HONG ◽  
Chan PARK

Recently, many Nobel Prizes in Physics have been awarded in the field of astrophysics. Gravitational wave observations and contributions to LIGO in 2017, cosmology and exoplanets in 2019, and black hole formation theory and discovery of a supermassive black hole in 2020. Surprisingly, that these topics, which are somewhat distant from our daily life, have great physical significance and are being actively studied worldwide. We invited young astrophysicists at the forefront of astrophysic research to share their thoughts on astrophysics. That conversation took place online on June 2, 2021.


2016 ◽  
Vol 12 (S324) ◽  
pp. 273-278
Author(s):  
Robert Lasenby

AbstractBosonic fields around a spinning black hole can be amplified via ‘superradiance’, a wave analogue of the Penrose process, which extracts energy and momentum from the black hole. For hypothetical ultra-light bosons, with Compton wavelengths on ≳ km scales, such a process can lead to the exponential growth of gravitationally bound states around astrophysical Kerr black holes. If such particles exist, as predicted in many theories of beyond Standard Model physics, then these bosonic clouds give rise to a number of potentially-observable signals. Among the most promising are monochromatic gravitational radiation signals which could be detected at Advanced LIGO and future gravitational wave observatories.


Sign in / Sign up

Export Citation Format

Share Document